Patents by Inventor Bryan Cadugan

Bryan Cadugan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200259026
    Abstract: An electronics module assembly for detecting photons is provided to include: a substrate layer; a buried layer deposited upon a first surface area of the substrate layer; an intrinsic layer deposited upon a first portion of a first surface area of the buried layer; a plug layer deposited upon a second portion of the first surface area of the buried layer; a p-plus layer deposited upon a first surface area of the intrinsic layer; an n-plus layer deposited upon a first surface area of the plug layer; a pre-metal dielectric (PMD) layer deposited upon the p-plus layer and n-plus layer; a first node coupled, through the PMD layer, to the p-plus layer; and a second node coupled, through the PMD layer, to the n-plus layer.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Harianto Wong, William P. Taylor
  • Publication number: 20200259033
    Abstract: According to an embodiment of the present disclosure, a photodetector device can include a substrate layer; a bottom contacting layer disposed over a surface of the substrate layer and having a first contacting region and a second contacting region, the bottom contacting layer providing a low resistance path between the first and second contacting regions; an insulating layer disposed over a surface of the bottom contacting layer; an intrinsic region disposed within the insulating layer, the intrinsic region in electrical contact with the first contacting region of the bottom contacting layer, the intrinsic region comprising a low band-gap material; a metal contact disposed within the insulating layer and in electrical contact with the second contacting region of the bottom contacting layer; an anode in electrical contact with the intrinsic region; and a cathode in electrical contact with the metal contact.
    Type: Application
    Filed: January 13, 2020
    Publication date: August 13, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Harianto Wong, William P. Taylor
  • Patent number: 10670669
    Abstract: A magnetic field sensor can include a substrate disposed in an x-y plane with x and y axes; one or more magnetoresistance elements, wherein magnetic directions of reference layers of each of the one or more magnetoresistance elements are parallel to the x axis; wherein the one or more magnetoresistance elements are operable to generate a magnetoresistance element signal; a first current conductor operable to generate a first AC magnetic field in an x-direction and a second current conductor operable to generate a second AC magnetic field in a y-direction; and a component determination circuit comprising at least two of: a first demodulator to demodulate the magnetoresistance element signal with a first clock signal with a first frequency, a second demodulator coupled to demodulate the magnetoresistance element signal with the first clock signal or with a second clock signal with a second frequency, or a low pass filter operable to filter the magnetoresistance element signal.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 2, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Bryan Cadugan
  • Publication number: 20200116799
    Abstract: A magnetic field sensor can include a substrate disposed in an x-y plane with x and y axes; one or more magnetoresistance elements, wherein magnetic directions of reference layers of each of the one or more magnetoresistance elements are parallel to the x axis; wherein the one or more magnetoresistance elements are operable to generate a magnetoresistance element signal; a first current conductor operable to generate a first AC magnetic field in an x-direction and a second current conductor operable to generate a second AC magnetic field in a y-direction; and a component determination circuit comprising at least two of: a first demodulator to demodulate the magnetoresistance element signal with a first clock signal with a first frequency, a second demodulator coupled to demodulate the magnetoresistance element signal with the first clock signal or with a second clock signal with a second frequency, or a low pass filter operable to filter the magnetoresistance element signal.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Bryan Cadugan
  • Publication number: 20200116800
    Abstract: A magnetic field sensor can include a magnetic field sensor can include a substrate having a major surface in an x-y plane with an x axis and a y axis. The magnetic field sensor can also have an external field sensing circuit disposed upon the substrate and responsive to an external magnetic field generated outside of the magnetic field sensor. The external field sensing circuit can include one or more magnetoresistance elements, each having a respective reference layer with a magnetic direction parallel to the y axis and in the x-y plane. The one or more magnetoresistance elements can be operable to generate a magnetoresistance element signal responsive to the external magnetic field.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Bryan Cadugan
  • Patent number: 10578684
    Abstract: A magnetic field sensor can include a substrate, a first magnetoresistance element disposed over the substrate and including a first maximum response axis and a first bias layer structure configured to generate a first bias magnetic field with a first magnetic direction between ninety degrees and sixty degrees relative to the first maximum response axis. The magnetic field sensor can also include a second magnetoresistance element disposed over the substrate and including a second maximum response axis parallel to the first maximum response axis and a second bias layer structure configured to generate a second bias magnetic field with a second magnetic direction parallel to the first magnetic direction and opposed to the first magnetic direction. The first and second magnetoresistance elements can each have a pair of electrical contacts for coupling to circuits.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: March 3, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Rémy Lassalle-Balier, Alexander Latham, Paolo Campiglio, Noémie Belin
  • Publication number: 20200041583
    Abstract: Methods and apparatus for a magnetic field sensor integrated circuit including a lead frame having a first surface, a second opposing surface, and a plurality of leads. A substrate has a first surface supporting a magnetic field sensing element and a second surface attached to the first surface of the lead frame. A magnet has a first surface and a second, opposing surface, and is configured to generate a magnetic field. A spacer is positioned between the first surface of the magnet and the second surface of the lead frame with a thickness selected to establish a predetermined distance between the first surface of the magnet and the magnetic field sensing element, the predetermined distance selected to provide the magnetic field signal as a sinusoidal signal.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, William P. Taylor
  • Publication number: 20200033424
    Abstract: A magnetoresistance assembly can include a substrate and a first GMR element disposed over the substrate, the first GMR element having a bottom surface and top surface. The magnetoresistance assembly can further include a first TMR element disposed over the substrate, the first TMR element having a top surface and a bottom surface, wherein a line perpendicular to and intersecting the top or bottom surface of the first TMR element intersects the first GMR element. The first GMR element and the first TMR element are in electrical communication.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 30, 2020
    Applicants: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Paolo Campiglio, Bryan Cadugan, Amal Hamdache, Florian Pallier, Claude Fermon
  • Publication number: 20200018780
    Abstract: A current sensor can indirectly measure a sensed current by directly measuring static perturbing AC magnetic fields with magnetoresistance elements, the perturbing magnetic fields generated by perturbing coils. The sensed current can be indirectly measured by modulating or changing sensitivities of the magnetoresistance elements in a way that is directly related to the sensed current.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Rémy Lassalle-Balier, Alexander Latham, Paolo Campiglio, Noémie Belin
  • Patent number: 10509058
    Abstract: A current sensor can indirectly measure a sensed current by directly measuring static perturbing AC magnetic fields with magnetoresistance elements, the perturbing magnetic fields generated by perturbing coils. The sensed current can be indirectly measured by modulating or changing sensitivities of the magnetoresistance elements in a way that is directly related to the sensed current.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: December 17, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Rémy Lassalle-Balier, Alexander Latham, Paolo Campiglio, Noémie Belin
  • Patent number: 10451671
    Abstract: Methods and apparatus for processing a signal comprise at least one circuit configured to generate a measured signal during a measured time period and a reference signal during a reference time period. Also included is at least one dual- or multi-path analog-to-digital converter comprising at least a first processing circuit configured to process the measured signal, at least a second processing circuit configured to process the reference signal, and a third processing circuit configured to process both the measured signal and the reference signal.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 22, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Craig S. Petrie, Bryan Cadugan
  • Publication number: 20190285667
    Abstract: Systems and methods described herein are directed towards integrating a shield layer into a current sensor to shield a magnetic field sensing element and associated circuitry in the current sensor from electrical, voltage, or electrical transient noise. In an embodiment, a shield layer may be disposed along at least one surface of a die supporting a magnetic field sensing element. The shield layer may be disposed in various arrangements to shunt noise caused by a parasitic coupling between the magnetic field sensing element and the current carrying conductor away from the magnetic field sensing element.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 19, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Shaun D. Milano, Bryan Cadugan, Michael C. Doogue, Alexander Latham, William P. Taylor, Harianto Wong, Sundar Chetlur
  • Publication number: 20190279804
    Abstract: A magnetoresistance element assembly has two stacks of material layers with respective reference layers and respective bias layers that have relative magnetic directions that are not perpendicular to each other. Bias layers in the two stacks have bias magnetic directions that oppose each other. Linear range is increased.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Rémy Lassalle-Balier, Bryan Cadugan
  • Publication number: 20190219616
    Abstract: A current sensor can indirectly measure a sensed current by directly measuring static perturbing AC magnetic fields with magnetoresistance elements, the perturbing magnetic fields generated by perturbing coils. The sensed current can be indirectly measured by modulating or changing sensitivities of the magnetoresistance elements in a way that is directly related to the sensed current.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Rémy Lassalle-Balier, Alexander Latham, Paolo Campiglio, Noémie Belin
  • Publication number: 20190219643
    Abstract: A magnetic field sensor can include a substrate, a first magnetoresistance element disposed over the substrate and including a first maximum response axis and a first bias layer structure configured to generate a first bias magnetic field with a first magnetic direction between ninety degrees and sixty degrees relative to the first maximum response axis. The magnetic field sensor can also include a second magnetoresistance element disposed over the substrate and including a second maximum response axis parallel to the first maximum response axis and a second bias layer structure configured to generate a second bias magnetic field with a second magnetic direction parallel to the first magnetic direction and opposed to the first magnetic direction. The first and second magnetoresistance elements can each have a pair of electrical contacts for coupling to circuits.
    Type: Application
    Filed: February 13, 2018
    Publication date: July 18, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Rémy Lassalle-Balier, Alexander Latham, Paolo Campiglio, Noémie Belin
  • Patent number: 10352969
    Abstract: Systems and methods described herein are directed towards integrating a shield layer into a current sensor to shield a magnetic field sensing element and associated circuitry in the current sensor from electrical, voltage, or electrical transient noise. In an embodiment, a shield layer may be disposed along at least one surface of a die supporting a magnetic field sensing element. The shield layer may be disposed in various arrangements to shunt noise caused by a parasitic coupling between the magnetic field sensing element and the current carrying conductor away from the magnetic field sensing element.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 16, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shaun D. Milano, Bryan Cadugan, Michael C. Doogue, Alexander Latham, William P. Taylor, Harianto Wong, Sundar Chetlur
  • Patent number: 10347277
    Abstract: A magnetoresistance element has a pinning arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: July 9, 2019
    Assignees: Allegro MicroSystems, LLC, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Paolo Campiglio, Bryan Cadugan, Claude Fermon, Rémy Lassalle-Balier
  • Publication number: 20180340986
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicants: Allegro MicroSystems, LLC, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Alexander Latham, Claude Fermon, Jason Boudreau, Myriam Pannetier-Lecoeur, Bryan Cadugan, Hemán D. Romero
  • Publication number: 20180340989
    Abstract: A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least two spaced apart magnetic field sensing elements responsive to a sensing element drive signal and positioned proximate to the at least one coil; and a circuit coupled to the at least two magnetic field sensing elements to generate an output signal of the magnetic field sensor indicative of a difference between a distance of a conductive target with respect to each of the at least two spaced apart magnetic field sensing elements.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicants: Allegro MicroSystems, LLC, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Alexander Latham, Claude Fermon, Myriam Pannetier-Lecoeur, Bryan Cadugan
  • Publication number: 20180158475
    Abstract: A magnetoresistance element has a pinning arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 7, 2018
    Applicants: Allegro MicroSystems, LLC, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Paolo Campiglio, Bryan Cadugan, Claude Fermon, Rémy Lassalle-Balier