Patents by Inventor Bryan Crane

Bryan Crane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9193996
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: November 24, 2015
    Assignee: Illumina, Inc.
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Publication number: 20150151297
    Abstract: A fluidic device holder configured to orient a fluidic device. The device holder includes a support structure configured to receive a fluidic device. The support structure includes a base surface that faces in a direction along the Z-axis and is configured to have the fluidic device positioned thereon. The device holder also includes a plurality of reference surfaces facing in respective directions along an XY-plane. The device holder also includes an alignment assembly having an actuator and a movable locator arm that is operatively coupled to the actuator. The locator arm has an engagement end. The actuator moves the locator arm between retracted and biased positions to move the engagement end away from and toward the reference surfaces. The locator arm is configured to hold the fluidic device against the reference surfaces when the locator arm is in the biased position.
    Type: Application
    Filed: November 22, 2014
    Publication date: June 4, 2015
    Applicant: ILLUMINA, INC.
    Inventors: ERIK WILLIAMSON, BRYAN CRANE, PATRICK LEUNG, DREW VERKADE, MARK REED
  • Patent number: 8951781
    Abstract: A fluidic device holder configured to orient a fluidic device. The device holder includes a support structure configured to receive a fluidic device. The support structure includes a base surface that faces in a direction along the Z-axis and is configured to have the fluidic device positioned thereon. The device holder also includes a plurality of reference surfaces facing in respective directions along an XY-plane. The device holder also includes an alignment assembly having an actuator and a movable locator arm that is operatively coupled to the actuator. The locator arm has an engagement end. The actuator moves the locator arm between retracted and biased positions to move the engagement end away from and toward the reference surfaces. The locator arm is configured to hold the fluidic device against the reference surfaces when the locator arm is in the biased position.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 10, 2015
    Assignee: Illumina, Inc.
    Inventors: Mark T. Reed, Eric Williamson, Bryan Crane, Patrick Leung, Dale Buermann, Alexander P. Kindwall, Frederick Erie, Mark Pratt, Jason Harris, Andrew James Carson, Stanley S. Hong, Jason Bryant, Mark Wang, Drew Verkade
  • Publication number: 20140329694
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Publication number: 20140249858
    Abstract: Implementations are directed to providing a user of a mobile device access to patient information and patient physiological data. Actions can include receiving user input, the user input indicating a user command to display a laboratory results screen for a particular patient, processing patient-specific data and lab results data to provide one or more tables, and displaying the laboratory results screen on the mobile device, the laboratory results screen including the one or more tables, each table of the one or more tables providing one or more discrete data values, wherein a discrete data value of the one or more discrete values is user-selectable to provide detailed result information.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: AirStrip IP Holdings, LLC
    Inventors: Stephen Trey Moore, Augustine Vidal Pedraza, IV, Neil R. McQueen, Lloyd Kory Brown, Thomas Scott Wade, William Bryan Crane, Jean-Francois Lancelot
  • Patent number: 8753584
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 17, 2014
    Assignees: Illumina, Inc., The Arizona Board of Regents for and on behalf of Arizona State Univeristy
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Publication number: 20140080205
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicants: THE ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY, ILLUMINA, INC.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Patent number: 8597594
    Abstract: An apparatus for fragmenting nucleic acid. The apparatus includes a sample reservoir that comprises a fluid having nucleic acids. The apparatus can also include a shear wall that is positioned within the sample reservoir. The shear wall includes a porous core medium that has pores that are sized to permit nucleic acids to flow therethrough. The apparatus also includes first and second chambers that are separated by the shear wall. The first and second chambers are in fluid communication with each other through the porous core medium of the shear wall. Also, the apparatus may include first and second electrodes that are located within the first and second chambers, respectively. The first and second electrodes are configured to generate an electric field that induces a flow of the sample fluid. The nucleic acids move through the shear wall thereby fragmenting the nucleic acids.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: December 3, 2013
    Assignee: Illumina, Inc.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Publication number: 20130260372
    Abstract: A detection apparatus having a read head including a plurality of microfluorometers positioned to simultaneously acquire a plurality of the wide-field images in a common plane; and (b) a translation stage configured to move the read head along a substrate that is in the common plane. The substrate can be a flow cell that is included in a cartridge, the cartridge also including a housing for (i) a sample reservoir; (ii) a fluidic line between the sample reservoir and the flow cell; (iii) several reagent reservoirs in fluid communication with the flow cell, (iv) at least one valve configured to mediate fluid communication between the reservoirs and the flow cell; and (v) at least one pressure source configured to move liquids from the reservoirs to the flow cell. The detection apparatus and cartridge can be used together or independent of each other.
    Type: Application
    Filed: February 13, 2013
    Publication date: October 3, 2013
    Applicant: ILLUMINA, INC.
    Inventors: Dale Buermann, John A. Moon, Bryan Crane, Mark Wang, Stanley S. Hong, Jason Harris, Matthew Hage, Mark J. Nibbe
  • Publication number: 20120292190
    Abstract: An apparatus for fragmenting nucleic acid. The apparatus includes a sample reservoir that comprises a fluid having nucleic acids. The apparatus can also include a shear wall that is positioned within the sample reservoir. The shear wall includes a porous core medium that has pores that are sized to permit nucleic acids to flow therethrough. The apparatus also includes first and second chambers that are separated by the shear wall. The first and second chambers are in fluid communication with each other through the porous core medium of the shear wall. Also, the apparatus may include first and second electrodes that are located within the first and second chambers, respectively. The first and second electrodes are configured to generate an electric field that induces a flow of the sample fluid. The nucleic acids move through the shear wall thereby fragmenting the nucleic acids.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 22, 2012
    Applicants: THE ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY, ILLUMINA, INC.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Publication number: 20120270305
    Abstract: A fluidic device holder configured to orient a fluidic device. The device holder includes a support structure configured to receive a fluidic device. The support structure includes a base surface that faces in a direction along the Z-axis and is configured to have the fluidic device positioned thereon. The device holder also includes a plurality of reference surfaces facing in respective directions along an XY-plane. The device holder also includes an alignment assembly having an actuator and a movable locator arm that is operatively coupled to the actuator. The locator arm has an engagement end. The actuator moves the locator arm between retracted and biased positions to move the engagement end away from and toward the reference surfaces. The locator arm is configured to hold the fluidic device against the reference surfaces when the locator arm is in the biased position.
    Type: Application
    Filed: October 14, 2011
    Publication date: October 25, 2012
    Applicant: ILLUMINA INC.
    Inventors: MARK T. REED, ERIC WILLIAMSON, BRYAN CRANE, PATRICK LEUNG, DALE BUERMANN, ALEXANDER P. KINDWALL, Frederick ERIE, MARK PRATT, JASON HARRIS, ANDREW JAMES CARSON, Stanley S. HONG, JASON BRYANT, MARK WANG, DREW VERKADE
  • Patent number: 8252250
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 28, 2012
    Assignees: Illumina, Inc., The Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Publication number: 20100294665
    Abstract: A system for transferring and/or concentrating a sample is provided. The system includes a chamber with a membrane brave positioned within the chamber. An electrode assembly is configured to create an electric field across the membrane to move a charged sample through the chamber such that the sample collects and may concentrate on the membrane. The system may include a plurality of membranes. The system may also include a plurality of microchannels outwardly extending from the channel, where the membrane extends along the plurality of microchannels. Aspects of the invention are also directed to a pipette which may be used to transfer and concentrate a sample on a membrane. Certain embodiments are directed to methods and systems for concentrating a nucleic acid sample.
    Type: Application
    Filed: July 11, 2008
    Publication date: November 25, 2010
    Inventors: Richard Allen, Randall E. Burton, Bryan Crane, Jeffrey R. Krogmeier, Jonathan W. Larson, Vyacheslav Papkov, Nicaulas Sabourin, Qun Zhong, Yi Zhou
  • Publication number: 20100187115
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Application
    Filed: November 25, 2009
    Publication date: July 29, 2010
    Applicant: ILLUMINA CORPORATION
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain