Patents by Inventor Burn Jeng Lin

Burn Jeng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12009177
    Abstract: A method includes applying a first voltage to a source of a first transistor of a detector unit of a semiconductor detector in a test wafer and applying a second voltage to a gate of the first transistor and a drain of a second transistor of the detector unit. The first transistor is coupled to the second transistor in series, and the first voltage is higher than the second voltage. A pre-exposure reading operation is performed to the detector unit. Light of an exposure apparatus is illuminated to a gate of the second transistor after applying the first and second voltages. A post-exposure reading operation is performed to the detector unit. Data of the pre-exposure reading operation is compared with the post-exposure reading operation. An intensity of the light is adjusted based on the compared data of the pre-exposure reading operation and the post-exposure reading operation.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: June 11, 2024
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Ya-Chin King, Chrong-Jung Lin, Burn-Jeng Lin, Chien-Ping Wang, Shao-Hua Wang, Chun-Lin Chang, Li-Jui Chen
  • Publication number: 20240168373
    Abstract: A photoresist composition includes a mixture. The mixture includes a first photosensitive material and a second photosensitive material. The first photosensitive material is a 6-Sn oxide cluster, a 12-Sn oxide cluster or a combination thereof. The second photosensitive material has a composition being different from a composition of the first photosensitive material.
    Type: Application
    Filed: June 13, 2023
    Publication date: May 23, 2024
    Applicants: Taiwan Semiconductor Manufacturing Company, Ltd., National Tsing Hua University
    Inventors: Jui-Hsiung LIU, Tsai-Sheng GAU, Burn Jeng LIN, Yan-Ru WU, Ting-An LIN, Han-Tsung TSAI, Po-Hsiung CHEN
  • Publication number: 20240112912
    Abstract: A method of manufacturing a semiconductor device includes the following steps. A photoresist layer is formed over a material layer on a substrate. The photoresist layer has a composition including a solvent and a first photo-active compound dissolved in the solvent. The first photo-active compound is represented by the following formula (Al) or formula (A2): Zr12O8(OH)14(RCO2)18??Formula (A1); or Hf6O4(OH)6(RCO2)10??Formula (A2). R in the formula (A1) and R in the formula (A2) each include one of the following formulae (1) to (6): The photoresist layer is patterned. The material layer is etched using the photoresist layer as an etch mask.
    Type: Application
    Filed: July 28, 2023
    Publication date: April 4, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Jui-Hsiung LIU, Yu-Fang TSENG, Pin-Chia LIAO, Burn Jeng LIN, Tsai-Sheng GAU, Po-Hsiung CHEN, Po-Wen CHIU
  • Publication number: 20240111210
    Abstract: A method of manufacturing a semiconductor device includes the following steps. A photoresist layer is formed over a material layer on a substrate. The photoresist layer has a composition including a solvent and a first photo-active compound dissolved in the solvent. The first photo-active compound is represented by the following formula (A1) or formula (A2): Zr12O8(OH)14(RCO2)18 ??Formula (A1); or Hf6O4(OH)6(RCO2)10 ??Formula (A2). R in the formula (A1) and R in the formula (A2) each include one of the following formulae (1) to (6): The photoresist layer is patterned. The material layer is etched using the photoresist layer as an etch mask.
    Type: Application
    Filed: May 9, 2023
    Publication date: April 4, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Jui-Hsiung LIU, Pin-Chia LIAO, Ting-An LIN, Ting-An SHIH, Yu-Fang TSENG, Burn Jeng LIN, Tsai-Sheng GAU, Po-Hsiung CHEN, Po-Wen CHIU
  • Publication number: 20240038921
    Abstract: A device includes an active region, an isolation structure, a gate structure, an interlayer dielectric (ILD) layer, a reading contact, and a sensing contact. The isolation structure laterally surrounds the active region. The gate structure is across the active region. The ILD layer laterally surrounds the gate structure. The reading contact is in contact with the isolation structure and is separated from the gate structure by a first portion of the ILD layer. The sensing contact is in contact with the isolation structure and is separated from the gate structure by a second portion of the ILD layer.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Ya-Chin KING, Chrong Jung LIN, Burn Jeng LIN, Shi-Jiun WANG
  • Publication number: 20230378377
    Abstract: A device includes a detector, a sensing pad, a ring structure, a control circuit, a first transistor, and a second transistor. The sensing pad is electrically connected to the detector. The ring structure is over the sensing pad and includes an upper conductive ring and a lower conductive ring between the upper conductive ring and the sensing pad. The first transistor interconnects the upper conductive ring and the control circuit. The second transistor interconnects the lower conductive ring and the control circuit.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Ya-Chin KING, Chrong Jung LIN, Burn Jeng LIN, Shi-Jiun WANG
  • Patent number: 11824133
    Abstract: A device includes a semiconductor fin, an isolation structure, a gate structure, source/drain structures, a sensing contact, a sensing pad structure, and a reading contact. The semiconductor fin includes a channel region and source/drain regions on opposite sides of the channel region. The isolation structure laterally surrounds the semiconductor fin. The gate structure is over the channel region of the semiconductor fin. The source/drain structures are respectively over the source/drain regions of the semiconductor fin. The sensing contact is directly on the isolation structure and adjacent to the gate structure. The sensing pad structure is connected to the sensing contact. The reading contact is directly on the isolation structure and adjacent to the gate structure.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: November 21, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Ya-Chin King, Chrong Jung Lin, Burn Jeng Lin, Shi-Jiun Wang
  • Publication number: 20230259024
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, selectively exposing the photoresist layer to an EUV radiation, and developing the selectively exposed photoresist layer. The photoresist layer has a composition including a solvent and a photo-active compound dissolved in the solvent and composed of a molecular cluster compound incorporating hexameric tin and two chloro ligands.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 17, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Jui-Hsiung LIU, Po-Hsuan LEE, An-Yun LU, Kuang-Ting CHEN, Po-Hsiung CHEN, Burn Jeng LIN
  • Publication number: 20230026707
    Abstract: A device includes a semiconductor fin, an isolation structure, a gate structure, source/drain structures, a sensing contact, a sensing pad structure, and a reading contact. The semiconductor fin includes a channel region and source/drain regions on opposite sides of the channel region. The isolation structure laterally surrounds the semiconductor fin. The gate structure is over the channel region of the semiconductor fin. The source/drain structures are respectively over the source/drain regions of the semiconductor fin. The sensing contact is directly on the isolation structure and adjacent to the gate structure. The sensing pad structure is connected to the sensing contact. The reading contact is directly on the isolation structure and adjacent to the gate structure.
    Type: Application
    Filed: February 11, 2022
    Publication date: January 26, 2023
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Ya-Chin KING, Chrong Jung LIN, Burn Jeng LIN, Shi-Jiun WANG
  • Publication number: 20220252989
    Abstract: A semiconductor fabrication apparatus and a method of using the same are disclosed. In one aspect, the apparatus includes a holder configured to place a substrate and a radiation source configured to provide radiation to transfer a pattern onto the substrate. The apparatus also includes a plurality of sensing devices configured to provide a reference signal based on an intensity of the radiation when the substrate is not present. The apparatus further includes a controller, operatively coupled to the plurality of sensing devices, configured to adjust the intensity of the radiation based on the reference signal.
    Type: Application
    Filed: December 22, 2021
    Publication date: August 11, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Der Chih, May-Be Chen, Ya-Chin King, Chrong Jung Lin, Burn Jeng Lin, Bo Yu Lin
  • Patent number: 11335609
    Abstract: A micro detector includes a substrate, a fin structure, a floating gate, a sensing gate, a reading gate and an antenna layer. The fin structure is located on the substrate. The floating gate is located on the substrate, and the floating gate is vertically and crossly arranged with the fin structure. The sensing gate is located at one side of the fin structure. The reading gate is located at the other side of the fin structure. The antenna layer is located on the sensing gate and is connected with the sensing gate. An induced charge is generated when the antenna layer is contacted with an external energy source, and the induced charge is stored in the floating gate.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: May 17, 2022
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Burn-Jeng Lin, Chrong-Jung Lin, Ya-Chin King, Yi-Pei Tsai
  • Publication number: 20210407764
    Abstract: A method includes applying a first voltage to a source of a first transistor of a detector unit of a semiconductor detector in a test wafer and applying a second voltage to a gate of the first transistor and a drain of a second transistor of the detector unit. The first transistor is coupled to the second transistor in series, and the first voltage is higher than the second voltage. A pre-exposure reading operation is performed to the detector unit. Light of an exposure apparatus is illuminated to a gate of the second transistor after applying the first and second voltages. A post-exposure reading operation is performed to the detector unit. Data of the pre-exposure reading operation is compared with the post-exposure reading operation. An intensity of the light is adjusted based on the compared data of the pre-exposure reading operation and the post-exposure reading operation.
    Type: Application
    Filed: February 9, 2021
    Publication date: December 30, 2021
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., NATIONAL TSING HUA UNIVERSITY
    Inventors: Ya-Chin KING, Chrong-Jung LIN, Burn-Jeng LIN, Chien-Ping WANG, Shao-Hua WANG, Chun-Lin CHANG, Li-Jui CHEN
  • Patent number: 11061317
    Abstract: The present disclosure provides one embodiment of an IC method that includes receiving an IC design layout, which has a plurality of main features and a plurality of space blocks. The IC method also includes calculating an optimized block dummy density ratio r0 to optimize a uniformity of pattern density (UPD), determining a target block dummy density ratio R, determining size, pitch and type of a non-printable dummy feature, generating a pattern for dummy features and adding the dummy features in the IC design layout.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jyuh-Fuh Lin, Cheng-Hung Chen, Pei-Yi Liu, Wen-Chuan Wang, Shy-Jay Lin, Burn Jeng Lin
  • Publication number: 20210159129
    Abstract: A micro detector includes a substrate, a fin structure, a floating gate, a sensing gate, a reading gate and an antenna layer. The fin structure is located on the substrate. The floating gate is located on the substrate, and the floating gate is vertically and crossly arranged with the fin structure. The sensing gate is located at one side of the fin structure. The reading gate is located at the other side of the fin structure. The antenna layer is located on the sensing gate and is connected with the sensing gate. An induced charge is generated when the antenna layer is contacted with an external energy source, and the induced charge is stored in the floating gate.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 27, 2021
    Inventors: Burn-Jeng LIN, Chrong-Jung LIN, Ya-Chin KING, Yi-Pei TSAI
  • Patent number: 11003097
    Abstract: Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Burn Jeng Lin, Ching-Yu Chang
  • Patent number: 10811225
    Abstract: The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyuh-Fuh Lin, Cheng-Hung Chen, Pei-Yi Liu, Wen-Chuan Wang, Shy-Jay Lin, Burn Jeng Lin
  • Publication number: 20200321255
    Abstract: A micro detector includes a substrate, a fin structure, a floating gate, a sensing gate, a reading gate and an antenna layer. The fin structure is located on the substrate. The floating gate is located on the substrate, and the floating gate is vertically and crossly arranged with the fin structure. The sensing gate is located at one side of the fin structure. The reading gate is located at the other side of the fin structure. The antenna layer is located on the sensing gate and is connected with the sensing gate. An induced charge is generated when the antenna layer is contacted with an external energy source, and the induced charge is stored in the floating gate.
    Type: Application
    Filed: September 26, 2019
    Publication date: October 8, 2020
    Inventors: Burn-Jeng LIN, Chrong-Jung LIN, Ya-Chin KING, Yi-Pei TSAI
  • Publication number: 20200124992
    Abstract: Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Burn Jeng Lin, Ching-Yu Chang
  • Publication number: 20200027699
    Abstract: The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.
    Type: Application
    Filed: September 29, 2019
    Publication date: January 23, 2020
    Inventors: Jyuh-Fuh LIN, Cheng-Hung CHEN, Pei-Yi LIU, Wen-Chuan WANG, Shy-Jay LIN, Burn Jeng LIN
  • Patent number: 10520836
    Abstract: Immersion lithography system and method using a sealed wafer bottom are described. One embodiment is an immersion lithography apparatus comprising a lens assembly comprising an imaging lens and a wafer stage for retaining a wafer beneath the lens assembly, the wafer stage comprising a seal ring disposed on a seal ring frame along a top edge of the wafer retained on the wafer stage, the seal ring for sealing a gap between an edge of the wafer and the wafer stage. The embodiment further includes a fluid tank for retaining immersion fluid, the fluid tank situated with respect to the wafer stage for enabling full immersion of the wafer retained on the wafer stage in the immersion fluid and a cover disposed over at least a portion of the fluid tank for providing a temperature-controlled, fluid-rich environment within the fluid tank.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Burn Jeng Lin, Ching-Yu Chang