Patents by Inventor C. Edwin Tracy

C. Edwin Tracy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10263277
    Abstract: Exemplary flexible thin film solid state lithium ion batteries (10) and methods for making the same are disclosed. An exemplary flexible solid state thin film electrochemical device (10) may include a flexible substrate (12), first (14) and second electrodes (18), and an electrolyte (16) disposed between the first (14) and second electrodes (18). The electrolyte (16) is disposed on the flexible substrate (12). The first electrode (14) is disposed on the electrolyte (16), and the second electrode (18) having been buried between the electrolyte (16) and the substrate (12).
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: April 16, 2019
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: John Roland Pitts, Se-Hee Lee, C. Edwin Tracy
  • Patent number: 9093707
    Abstract: A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: July 28, 2015
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Se-Hee Lee, C. Edwin Tracy, John Roland Pitts, Ping Liu
  • Patent number: 8691447
    Abstract: Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: April 8, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: J. Roland Pitts, Se-Hee Lee, C. Edwin Tracy, Wenming Li
  • Patent number: 8643930
    Abstract: Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 4, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Dane T. Gillaspie, Se-Hee Lee, C. Edwin Tracy, John Roland Pitts
  • Publication number: 20120164517
    Abstract: A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
    Type: Application
    Filed: December 13, 2011
    Publication date: June 28, 2012
    Applicant: Alliance for Sustainable Energy, LLC.
    Inventors: Se-Hee LEE, C. Edwin Tracy, Ping Liu
  • Patent number: 8084265
    Abstract: Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 27, 2011
    Assignee: Alliance for Sustianable Energy, LLC
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, R. Davis Smith, II, Se-Hee Lee
  • Publication number: 20110151283
    Abstract: Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
    Type: Application
    Filed: August 31, 2007
    Publication date: June 23, 2011
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC.
    Inventors: Dane T. Gillaspie, Se-Hee Lee, C. Edwin Tracy, John Roland Pitts
  • Patent number: 7910373
    Abstract: An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO3 layer coated on the substrate; and a palladium layer coated on the water-doped WO3 layer.
    Type: Grant
    Filed: May 5, 2001
    Date of Patent: March 22, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, Se-Hee Lee
  • Publication number: 20100261067
    Abstract: Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).
    Type: Application
    Filed: February 25, 2008
    Publication date: October 14, 2010
    Inventors: J. Roland Pitts, Se-Hee Lee, C. Edwin Tracy, Wenming Li
  • Patent number: 7722966
    Abstract: Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: May 25, 2010
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Se-Hee Lee, C. Edwin Tracy, J. Roland Pitts
  • Publication number: 20100055573
    Abstract: A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
    Type: Application
    Filed: November 4, 2009
    Publication date: March 4, 2010
    Applicant: Alliance for Sustainable Energy, LLC
    Inventors: Se-Hee Lee, C. Edwin Tracy, Ping Liu
  • Patent number: 7632602
    Abstract: A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: December 15, 2009
    Assignee: Alliance For Sustainable Energy, LLC
    Inventors: Se-Hee Lee, C. Edwin Tracy, Ping Liu
  • Publication number: 20090057137
    Abstract: A method (100) is provided for synthesizing a thin film electrode (350) such as an electrochromic (EC) electrode (426) or counter electrode (434) for an EC device (410), a lithiated film of transition metal oxide (616) for a battery device (600), or the like. The method (100) includes providing (140) a source material (322) within a deposition chamber (310) such as a target for sputtering, and the source material (322) includes a transition metal oxide and ionic lithium. The method (100) continues with positioning (140) an electrically conductive substrate (340) with an exposed surface within the deposition chamber (310). A thin film (350) of the transition metal oxide and the ionic lithium is deposited upon the exposed surface of the substrate (340) using physical vapor deposition with the source material (322) to form in a single deposition step a layer of lithiated transition metal oxide (350).
    Type: Application
    Filed: August 20, 2008
    Publication date: March 5, 2009
    Applicant: Midwest Research Institute
    Inventors: J. Roland Pitts, Se-Hee Lee, C. Edwin Tracy, Dane Gillaspie
  • Publication number: 20090053822
    Abstract: Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
    Type: Application
    Filed: March 31, 2008
    Publication date: February 26, 2009
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, R. Davis Smith, II, Se-Hee Lee
  • Patent number: 7431896
    Abstract: A thermally-activated exhaust treatment device, such as a catalytic converter, for vehicles includes a core having an inner housing and a catalytic material. A jacket includes an outer housing enclosing the inner housing, but characteristically not contacting the inner housing. The inner and outer housings include walls forming a vacuum-drawn sealed insulation cavity around the inner housing. A temperature-activated variable insulator device is positioned within the outer housing and includes a hydrogen source and controls for controlling the variable insulator device. A vacuum-maintenance device is incorporated into the insulation cavity, and includes a small container, getter material positioned in the container, and a porous member allowing gas in the insulation cavity to communicate with the getter material. A multi-layered radiation shield is positioned in the vacuum space and is loosely coupled to the inner housing. A vacuum detector includes a visible indicator of the vacuum in the insulation cavity.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: October 7, 2008
    Assignee: Benteler Automotive Corporation
    Inventors: John P. Biel, Jr., David K. Benson, Steven D. Burch, Frederick B. Hill, Jr., Matthew A. Keyser, Lance Mews, Donald R. Rigsby, C. Edwin Tracy
  • Patent number: 7419635
    Abstract: A sensor structure for chemochromic optical detection of hydrogen gas over a wide response range, that exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas, comprising: a glass substrate (20); a vanadium oxide layer (21) coated on the glass substrate; and a palladium layer (22) coated on the vanadium oxide layer.
    Type: Grant
    Filed: May 5, 2001
    Date of Patent: September 2, 2008
    Assignee: Midwest Research Institute
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, R. Davis Smith, II, Se-Hee Lee
  • Patent number: 7233034
    Abstract: A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 19, 2007
    Assignee: Midwest Research Institute
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, Se-Hee Lee
  • Patent number: 6908595
    Abstract: A thermally-activated exhaust treatment device, such as a catalytic converter (20); for vehicles includes a core having an inner housing (21) and a catalytic material (27, 27?). A jacket includes an outer housing (22) enclosing the inner housing (21) but characteristically not contacting the inner housing (21). The inner and outer housings (21, 22) includes walls (30, 31) forming a vacuum-drawn scaled insulation cavity (26) around the inner housing (21). A temperature-activated variable insulator device is positioned within the outer housing (22) and includes a hydrogen source (32) and controls for controlling the variable insulator device. A vacuum-maintenance device is incorporated into the insulation cavity (26), and includes a small container, getter material positioned in the container, a porous member allowing gas in the insulation cavity (26) to communicate with the getter material. A multi-layered radiation shield is position in the vacuum space and is loosely coupled to the inner housing (21).
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: June 21, 2005
    Assignee: Benteler Automotive Corporation
    Inventors: John P. Biel, Jr., David K. Benson, Steven D. Burch, Frederick B. Hill, Jr., Matthew A. Keyser, Lance Mews, Donald R. Rigsby, C. Edwin Tracy
  • Patent number: 6859297
    Abstract: The present invention discloses an amorphous material comprising nickel oxide doped with tantalum that is an anodically coloring electrochromic material. The material of the present invention is prepared in the form of an electrode (200) having a thin film (202) of an electrochromic material of the present invention residing on a transparent conductive film (203). The material of the present invention is also incorporated into an electrochromic device (100) as a thin film (102) in conjunction with a cathodically coloring prior art electrochromic material layer (104) such that the devices contain both anodically coloring (102) and cathodically coloring (104) layers. The materials of the electrochromic layers in these devices exhibit broadband optical complimentary behavior, ionic species complimentary behavior, and coloration efficiency complimentary behavior in their operation.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: February 22, 2005
    Assignee: Midwest Research Institute
    Inventors: Se-Hee Lee, C. Edwin Tracy, J. Roland Pitts, Gary J. Jorgensen
  • Patent number: 6805999
    Abstract: A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: October 19, 2004
    Assignee: Midwest Research Institute
    Inventors: Se-Hee Lee, C. Edwin Tracy, Ping Liu