Patents by Inventor C. Willson

C. Willson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6514764
    Abstract: A multicell holder e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc, or by observing temperature change in the vicinity of the catalyst e.g. by thermographic techniques, to determine the relative efficacy of the catalysts in each combination.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: February 4, 2003
    Assignee: University of Houston, Texas
    Inventor: Richard C. Willson, III
  • Publication number: 20020197637
    Abstract: A mechanical cell lysis technique involving the use of compaction protection technology to shield nucleic acids during mechanical lysis. Mechanical lysis is an efficient and widely used method of liberating the contents of microbial cells, but the shear sensitivity of large nucleic acids impairs the application of this technique to DNA purification. The invention uses compaction agents, small polycations that condense nucleic acids, to protect DNA from shear damage and allow mechanical lysis to be used in chromosomal and plasmid DNA purification. In addition to protecting DNA during lysis, compaction allows DNA to be pelleted with the insoluble cell debris, washed, and resolubilized to yield an enriched DNA product. Highly shear-sensitive nucleic acid molecules such as large plasmids and BACs can also be protected during lysis. An added benefit is that lysate viscosity is greatly reduced, allowing for reduced volumes compared to alkaline lysis.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 26, 2002
    Inventors: Richard C. Willson, Jason C. Murphy
  • Publication number: 20020127725
    Abstract: Apparatus for testing catalyst candidates including a multi-cell holder e.g. a honeycomb or plate, or a collection of individual support particles that have been treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients and dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets. The apparatus also includes structure for contacting the catalyst candidates with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc.
    Type: Application
    Filed: December 21, 2001
    Publication date: September 12, 2002
    Inventor: Richard C. Willson
  • Publication number: 20020066532
    Abstract: A corrosion-resistant protective coating for an apparatus and method of processing a substrate in a chamber containing a plasma of a processing gas. The protective coating or sealant is used to line or coat inside surfaces of a reactor chamber that are exposed to corrosive processing gas that forms the plasma. The protective coating comprises at least one polymer resulting from a monomeric anaerobic chemical mixture having been cured in a vacuum in the absence of oxygen. The protective coating includes a major proportion of at least one methacrylate compound and a minor proportion of an activator compound which initiates the curing process of the monomeric anaerobic mixture in the absence of oxygen or air.
    Type: Application
    Filed: October 22, 2001
    Publication date: June 6, 2002
    Inventors: Hong Shih, Nianci Han, Jie Yuan, Joe Sommers, Diana Ma, Paul Vollmer, Michael C. Willson
  • Publication number: 20020010145
    Abstract: embodiments of the invention include purification of DNA, preferably plasmid DNA, by use of selective precipitation, preferably by addition of compaction agents Also included is a scaleable method for the liquid-phase separation of DNA from RNA. RNA may also be recovered by fractional precipitation according to the invention. RNA, commonly the major contaminant in DNA preparations, can be left in solution while valuable purified plasmid DNA is directly precipitated. Endotoxin can also be kept to very low levels. The invention includes mini-preps, preferably of plasmid and chromosomal DNA to obtain sequenceable and restriction digestible DNA in high yields in multiple simultaneous procedures. As a method of assay, a labeled probe is precipitated by hybridizing it to a target, (erg. chromosomal DNA, oligonucleotides, Ribosomal RNA, tRNA), and thereafter precipitating the probe/target complex with compaction agents and leaving in solution any unhybridized probe.
    Type: Application
    Filed: April 24, 2001
    Publication date: January 24, 2002
    Inventors: Richard C. Willson, Jason Murphy
  • Patent number: 6333196
    Abstract: Apparatus for testing catalyst candidates including a multicell holder e.g. a honeycomb or plate, or a collection of individual support particles that have been treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients and dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets. The apparatus also includes structure for contacting the catalyst candidates with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: December 25, 2001
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6063633
    Abstract: A multicell holder e.g. a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CC12F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc, or by observing temperature change in the vicinity of the catalyst e.g. by thermographic techniques, to determine the relative efficacy of the catalysts in each combination.
    Type: Grant
    Filed: June 17, 1996
    Date of Patent: May 16, 2000
    Assignee: The University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 5185585
    Abstract: Crystal oscillator and method which in one embodiment have a crystal element connected in a positive feedback loop with a charge amplifier and an integrator, with the gain of the loop being maintained at a level of unity. Compensation is provided to offset the effects of shunt capacitance in the crystal element, and precise phase control is maintained around the loop. In other embodiments, a crystal element is connected in a series feedback loop with a buffer amplifier, and operation is provided by maintaining the oscillation signal at level at which distortion, clipping, and saturation do not occur. Compensation for shunt capacitance across the crystal element is provided by applying a compensation signal which is equal in amplitude but opposite in phase to the signal passing through the shunt capacitance to the input terminal of the buffer amplifier to cancel the effect of the shunt capacitance.
    Type: Grant
    Filed: September 10, 1991
    Date of Patent: February 9, 1993
    Assignee: New SD, Inc.
    Inventors: Gerald R. Newell, Michael W. Nootbaar, Pradeep Bhardwaj, Robert C. Willson
  • Patent number: 4678583
    Abstract: A process for forming a purified solute from an aqueous solution is provided whereby a mixture of an extractant, a hydrate former and the aqueous solution is first formed. The hydrate former forms a hydrate with water while the solute does not form a hydrate. The extractant takes up the solute from the aqueous solution. The mixture is subjected to a temperature and pressure sufficient to form the solid hydrate of the hydrate former, an aqueous solution of the solute and a portion comprising the extractant containing the solute. The solute is recovered from the portion comprising the extractant and the solute.
    Type: Grant
    Filed: June 12, 1986
    Date of Patent: July 7, 1987
    Assignee: Massachusetts Institute of Technology
    Inventors: Richard C. Willson, III, Eric Bulot, Charles L. Cooney
  • Patent number: 4389189
    Abstract: A refractory component which is vacuum-formed from ceramic fibres and which is to be mounted on the external casing or frame structure of a furnace to form part of heat-resisting lining is provided with an internal reinforcement in those parts of the component nearest the casing or frame structure and by which the component is to be mounted on the casing or frame structure. The reinforcement is embedded in the component during formation thereof and is of stiff open mesh form extending in a plane parallel to the general plane of the part of the casing or frame structure on which the component is mounted. The reinforcement is made from heat-resisting metal alloy, refractory clay or recrystallized alumina and is preferably of channel-section or other three dimensional form to increase its stiffness.
    Type: Grant
    Filed: July 29, 1981
    Date of Patent: June 21, 1983
    Assignee: M. H. Detrick Co., Ltd.
    Inventors: Barrie J. Harvey, Robert C. Willson
  • Patent number: 4363785
    Abstract: A wood burning stove is formed with double front and rear side walls of heat conductive metal spaced apart by heat conductive spacer fins and providing air passageways by which room air is heated by conduction from the walls which are heated by the burning of wood deposited on a firebox floor supported in heat conducting relationship with the inner side walls. A catalytic converter is disposed over the fire area in the upper portion of the stove, and is arranged to receive preheated fresh secondary air which mixes with hot, incompletely combusted compounds from the fire and, in the presence of the catalyst, induces a secondary combustion of the substances. This mixture is channeled into a heat extraction chamber where the secondary combustion is completed and the resultant heat is transferred to the metal body of the stove. An exhaust passageway is provided for releasing the products of complete combustion into the atmosphere.
    Type: Grant
    Filed: June 25, 1981
    Date of Patent: December 14, 1982
    Inventor: Allan C. Willson
  • Patent number: 4248203
    Abstract: A wood burning stove is formed with double front and rear side walls of heat conductive metal interconnected by heat conductive spacer fins and providing air passageways by which room air is heated by conduction from the walls which are heated by the burning of wood deposited on a firebox grate made up of spaced bricks supported by metal holders secured in heat conducting relation to said inner side walls. The rear side air passageway is divided into central and outer vertical sections the central one of which is closed at the bottom end and communicates with the atmosphere through an opening in the outer wall intermediate its vertical ends and with the stove interior above the firebox and below the grate through openings in the inner wall intermediate its vertical ends and adjacent its bottom end, respectively.
    Type: Grant
    Filed: September 28, 1978
    Date of Patent: February 3, 1981
    Inventor: Allan C. Willson
  • Patent number: 4136662
    Abstract: A wood burning stove is formed with double front and rear side walls of heat conductive metal interconnected by heat conductive spacer fins and providing air passageways by which room air is heated by conduction from the walls which are heated by the burning of wood deposited on a firebox grate made up of spaced bricks supported by metal holders secured in heat conducting relation to said inner side walls. The rear side air passageway is divided into central and outer vertical sections the central one of which is closed at the bottom end and communicates with the atmosphere through an opening in the outer wall intermediate its vertical ends and with the stove interior above the firebox and below the grate through openings in the inner wall intermediate its vertical ends and adjacent its bottom end, respectively.
    Type: Grant
    Filed: September 26, 1977
    Date of Patent: January 30, 1979
    Inventor: Allan C. Willson
  • Patent number: 4106909
    Abstract: A coated waveguide holder-humidifier to supply moisture in the case of moisture-sensitive reactions in order that quantitative results might be obtained with a gradient light analytical detector which will quantitatively measure atmospheric contaminants by comparing changes in light transmission through the coated waveguides before and after exposure. The coated waveguide holder-humidifier comprises a container, a porous material capable of absorbing water and desorbing water vapor mounted within the container, means to hold one or more waveguides within the container, and one or more openings in the container to allow fluid (liquid or gas) sample to contact a waveguide.
    Type: Grant
    Filed: March 28, 1977
    Date of Patent: August 15, 1978
    Assignee: Monsanto Research Corporation
    Inventors: Donald J. David, Michael C. Willson
  • Patent number: 4040691
    Abstract: This invention is a coated waveguide holder-humdifier which is used to supply moisture in the case of moisture sensitive reactions in order that quantitative results might be obtained with a gradient light analytical detector which will quantitatively measure atmospheric contaminants by comparing changes in light transmission through the coated waveguides before and after exposure. The coated waveguide holder-humidifier comprises a container, a porous material capable of absorbing water and desorbing water vapor mounted within the container, means to hold one or more waveguides within the container, and one or more openings in the container to allow fluid (liquid or gas) sample to contact a waveguide.
    Type: Grant
    Filed: September 20, 1976
    Date of Patent: August 9, 1977
    Assignee: Monsanto Research Corporation
    Inventors: Donald J. David, Michael C. Willson
  • Patent number: 4003770
    Abstract: Polycrystalline silicon films useful in preparing solar cells primarily for terrestrial application are prepared by a plasma spraying process. A doped silicon powder is injected into a high temperature ionized gas (plasma) to become molten and to be sprayed onto a low-cost substrate. Upon cooling, a dense polycrystalline silicon film is obtained. A p-n junction is formed on the sprayed film by spray deposition, diffusion or ion implantation. A sprayed junction is produced by plasma spraying a thin layer of silicon of opposite polarity or type over the initially deposited doped film. In forming a diffused junction, dopant is applied over the surface of the initial plasma-sprayed film usually from the vapor phase and heat is used to cause the dopant to diffuse into the film to form a shallow layer of opposite polarity to that in the original film. A junction is also formed by implanting dopant ions in the surface of the originally deposited film by the use of electrical fields.
    Type: Grant
    Filed: March 24, 1975
    Date of Patent: January 18, 1977
    Assignee: Monsanto Research Corporation
    Inventors: Richard J. Janowiecki, Michael C. Willson, Douglas H. Harris