Patents by Inventor Carl J. Radens

Carl J. Radens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319870
    Abstract: An apparatus, system, and method are disclosed for a photovoltaic module, the photovoltaic module comprising a plurality of photovoltaic cells, a controllable infrared protection layer, and a protection switching means. The controllable infrared protection layer is for reducing the infrared radiation absorbed by the photovoltaic module, where the controllable infrared protection layer has a first state and a second state. When the infrared protection layer is in the first state the transmission of infrared radiation to the photovoltaic cells is higher than when the infrared protection layer is in the second state. The protection switching means is for switching the controllable infrared protection layer between the first state and the second state.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 11, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Timothy J. Dalton, Maxime Darnon, Rainer Krause, Gerd Pfeiffer, Kevin Prettyman, Carl J. Radens, Brian C. Sapp
  • Publication number: 20190172748
    Abstract: A semiconductor device includes a first trench on a mandrel line through a top mask layer and stopping at a middle mask layer; and a second trench on a non-mandrel line through the top mask layer and stopping at the middle mask layer. A spacer material is removed from a structure resulting from etching the first trench and the second trench. The device includes a first via structure, formed using a removable material, in the first trench; a second via structure, formed using a removable material, in the second trench; an air-gap formed in a third trench created at a location of the spacer; a fourth trench formed by etching, to remove the first via structure and a first portion of a bottom mask layer under the first via structure; and a self-aligned line-end via on the mandrel line formed by filling the fourth trench with a conductive metal.
    Type: Application
    Filed: January 25, 2019
    Publication date: June 6, 2019
    Applicant: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Carl J. Radens, John H. Zhang
  • Patent number: 10304815
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 28, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 10269905
    Abstract: A structure of a semiconductor device is described. A semiconductor device includes a transistor which further includes a gate structure, a source region and a drain region disposed on a first surface of a substrate. A wiring layer of conductive material is disposed over a second surface of the substrate. The second surface of the substrate is located opposite to the first surface of the substrate. A set of contact studs including a first contact stud which extends completely through the source region and through the substrate to a first respective portion of the wiring layer. The set of contact studs also includes a second contact stud which extends completely through the drain region and through the substrate to a second respective portion of the wiring layer.
    Type: Grant
    Filed: January 2, 2017
    Date of Patent: April 23, 2019
    Assignee: International Business Machines Corporation
    Inventors: Carl J Radens, Richard Q Williams
  • Patent number: 10242911
    Abstract: A semiconductor device includes a first trench on a mandrel line through a top mask layer and stopping at a middle mask layer; and a second trench on a non-mandrel line through the top mask layer and stopping at the middle mask layer. A spacer material is removed from a structure resulting from etching the first trench and the second trench. The device includes a first via structure, formed using a removable material, in the first trench; a second via structure, formed using a removable material, in the second trench; an air-gap formed in a third trench created at a location of the spacer; a fourth trench formed by etching, to remove the first via structure and a first portion of a bottom mask layer under the first via structure; and a self-aligned line-end via on the mandrel line formed by filling the fourth trench with a conductive metal.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Carl J. Radens, John H. Zhang
  • Patent number: 10157832
    Abstract: The disclosure is directed to an integrated circuit structure and methods of forming the same. The integrated circuit structure may include: a first metal level including a first metal line within a first dielectric layer; a second metal level including a second metal line in a second dielectric layer, the second metal level being over the first metal level; a first via interconnect structure extending through the first metal level and through the second metal level, wherein the first via interconnect structure abuts a first lateral of the first metal line and a first lateral end of the second metal line, and wherein the first via interconnect structure is a vertically uniform structure and includes a first metal.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: December 18, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John H. Zhang, Carl J. Radens, Lawrence A. Clevenger
  • Patent number: 10115633
    Abstract: A method for producing self-aligned line end vias and the resulting device are provided. Embodiments include trench lines formed in a dielectric layer; each trench line including a pair of self aligned line end vias; and a high-density plasma (HDP) oxide, silicon carbide (SiC) or silicon carbon nitride (SiCNH) formed between each pair of self aligned line end vias, wherein the trench lines and self aligned line end vias are filled with a metal liner and metal.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 30, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John H. Zhang, Carl J. Radens, Lawrence A. Clevenger
  • Publication number: 20180286750
    Abstract: A semiconductor device includes a first trench on a mandrel line through a top mask layer and stopping at a middle mask layer; and a second trench on a non-mandrel line through the top mask layer and stopping at the middle mask layer. A spacer material is removed from a structure resulting from etching the first trench and the second trench. The device includes a first via structure, formed using a removable material, in the first trench; a second via structure, formed using a removable material, in the second trench; an air-gap formed in a third trench created at a location of the spacer; a fourth trench formed by etching, to remove the first via structure and a first portion of a bottom mask layer under the first via structure; and a self-aligned line-end via on the mandrel line formed by filling the fourth trench with a conductive metal.
    Type: Application
    Filed: November 16, 2017
    Publication date: October 4, 2018
    Applicant: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Carl J. Radens, John H. Zhang
  • Publication number: 20180269220
    Abstract: A plurality of fin structures containing, from bottom to top, a non-doped semiconductor portion and a second doped semiconductor portion of a first conductivity type, extend upwards from a surface of a first doped semiconductor portion of the first conductivity type. A trapping material (e.g., an electron-trapping material) is present along a bottom portion of sidewall surfaces of each non-doped semiconductor portion and on exposed portions of each first doped semiconductor portion. Functional gate structures straddle each fin structure. Metal lines are located above each fin structure and straddle each functional gate structure. Each metal line is orientated perpendicular to each functional gate structure and has a bottommost surface that is in direct physical contact with a portion of a topmost surface of each of the second doped semiconductor portions.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 20, 2018
    Inventors: Ramachandra Divakaruni, Arvind Kumar, Carl J. Radens
  • Publication number: 20180261536
    Abstract: The disclosure is directed to an integrated circuit structure and methods of forming the same. The integrated circuit structure may include: a first metal level including a first metal line within a first dielectric layer; a second metal level including a second metal line in a second dielectric layer, the second metal level being over the first metal level; a first via interconnect structure extending through the first metal level and through the second metal level, wherein the first via interconnect structure abuts a first lateral of the first metal line and a first lateral end of the second metal line, and wherein the first via interconnect structure is a vertically uniform structure and includes a first metal.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: John H. Zhang, Carl J. Radens, Lawrence A. Clevenger
  • Publication number: 20180226511
    Abstract: Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 10026849
    Abstract: Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 17, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 10008500
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to segmented or cut finFET structures and methods of manufacture. The structure includes at least one logic finFET device having a fin of a first length, and at least one memory finFET device having a fin of a second length. The second length is shorter than the first length.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: June 26, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Carl J. Radens
  • Patent number: 10002876
    Abstract: A plurality of fin structures containing, from bottom to top, a non-doped semiconductor portion and a second doped semiconductor portion of a first conductivity type, extend upwards from a surface of a first doped semiconductor portion of the first conductivity type. A trapping material (e.g., an electron-trapping material) is present along a bottom portion of sidewall surfaces of each non-doped semiconductor portion and on exposed portions of each first doped semiconductor portion. Functional gate structures straddle each fin structure. Metal lines are located above each fin structure and straddle each functional gate structure. Each metal line is orientated perpendicular to each functional gate structure and has a bottommost surface that is in direct physical contact with a portion of a topmost surface of each of the second doped semiconductor portions.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Ramachandra Divakaruni, Arvind Kumar, Carl J. Radens
  • Publication number: 20180068994
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Application
    Filed: November 3, 2017
    Publication date: March 8, 2018
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 9911652
    Abstract: Mandrel lines non-mandrel lines, and spacers are located in a structure having several layers. A spacer in the set of spacers comprises a structure formed above the top mask layer. A first trench is etched at a first location on a mandrel line through the top mask layer and stopping at the middle mask layer. A second trench is etched at a second location on a non-mandrel line through the top mask layer and stopping at the middle mask layer. A spacer material is removed from a structure resulting from the etching the trenches. Vias are formed in the first and second trenches. An air-gap is formed at a location of the spacer. The first via structure and a first portion of the bottom mask layer under the first via structure are removed and filled with a conductive metal.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Carl J. Radens, John H. Zhang
  • Publication number: 20180061817
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Publication number: 20170365590
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Publication number: 20170352661
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to segmented or cut finFET structures and methods of manufacture. The structure includes at least one logic finFET device having a fin of a first length, and at least one memory finFET device having a fin of a second length. The second length is shorter than the first length.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 7, 2017
    Inventors: Kangguo CHENG, Carl J. RADENS
  • Publication number: 20170352591
    Abstract: A method for producing self-aligned line end vias and the resulting device are provided. Embodiments include trench lines formed in a dielectric layer; each trench line including a pair of self aligned line end vias; and a high-density plasma (HDP) oxide, silicon carbide (SiC) or silicon carbon nitride (SiCNH) formed between each pair of self aligned line end vias, wherein the trench lines and self aligned line end vias are filled with a metal liner and metal.
    Type: Application
    Filed: July 18, 2017
    Publication date: December 7, 2017
    Inventors: John H. ZHANG, Carl J. RADENS, Lawrence A. CLEVENGER