Patents by Inventor Carl Ramey

Carl Ramey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11609742
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: March 21, 2023
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Publication number: 20230085268
    Abstract: Described herein are techniques for yield enhancement in photonic communications platforms. A photonic communication platform may include a photonic substrate patterned with a plurality of photonic modules including at least first and second photonic modules, wherein the first and second photonic modules are copies of a common template photonic module. Yield enhancement may be accomplished using photonic redundancy and/or electronic redundancy. Photonic redundancy may involve redundant optical lanes provided in parallel to primary optical lanes. Electronic redundancy may involve use of additional electronic circuits or wires running in parallel to electronic circuits or wires. Defective circuits may be disabled to prevent negative impacts on other parts of the electronic system. This can be done by providing power-isolating switches that completely disable and isolate the defective circuits.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 16, 2023
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey
  • Publication number: 20230071600
    Abstract: A method for manipulating an input vector is described. The method involves controlling a plurality of optical switches to obtain a nominal orientation vector or a transpose orientation vector based on a plurality of input optical signals encoding the input vector and received at the plurality of optical switches. The nominal orientation vector and the transpose orientation vector represent transposed versions of one another. A memory system comprising a first section configured to store vectors in accordance with a nominal orientation and a second section configured to store vectors in accordance with a transpose orientation. A controller stores the nominal orientation vector in the first section of the memory system or stores the transpose orientation vector in the second section of the memory system.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 9, 2023
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Darius Bunandar, Ayon Basumallik
  • Publication number: 20220416908
    Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.
    Type: Application
    Filed: June 14, 2022
    Publication date: December 29, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
  • Publication number: 20220374575
    Abstract: Electronic-photonic packages and related fabrication methods are described. A package may include a plurality of photonic integrated circuits (PICs), where each PIC comprises a photonic accelerator configured to perform matrix multiplication in the optical domain. The package may further include an application specific integrated circuit (ASIC) configured to control at least one of the photonic accelerators. The package further includes an interposer. The plurality of PICs are coupled to a first side of the interposer and the ASIC is coupled to a second side of the interposer opposite the first side. A first thermally conductive member in thermal contact with at least one of the PICs. The first thermally conductive member may include a heat spreader. A second thermally conductive member in thermal contact with the ASIC. The second thermally conductive member may include a lid.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 24, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Carl Ramey, Nicholas C. Harris, Hamid Eslampour
  • Patent number: 11494541
    Abstract: Aspects relate to a photonic processing system, an integrated circuit, and a method of operating an integrated circuit to control components to modulate optical signals. A photonic processing system, comprising: a photonic integrated circuit comprising: a first electrically-controllable photonic component electrically coupling an input pin to a first output pin; and a second electrically-controllable photonic component electrically coupling the input pin to a second output pin.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: November 8, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Carl Ramey, Darius Bunandar, Nicholas C. Harris
  • Publication number: 20220317378
    Abstract: Methods and apparatus for tuning a photonics-based component. An opto-electrical detector is configured to output an electrical signal based on a measurement of light intensity of the photonics-based component, the light intensity being proportional to an amount of detuning of the photonics-based component. Analog-to-digital conversion (ADC) circuitry is configured to output a digital signal based on the electrical signal output from the opto-electrical detector. Feedback control circuitry is configured to tune the photonics-based component based, at least in part, on the digital signal output from the ADC circuitry.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Carlos Dorta-Quinones, Carl Ramey, Omer Ozgur Yildirim, Chithira Ravi, Shashank Gupta, Nicholas C. Harris
  • Patent number: 11409045
    Abstract: Methods and apparatus for tuning a photonics-based component. An opto-electrical detector is configured to output an electrical signal based on a measurement of light intensity of the photonics-based component, the light intensity being proportional to an amount of detuning of the photonics-based component. Analog-to-digital conversion (ADC) circuitry is configured to output a digital signal based on the electrical signal output from the opto-electrical detector. Feedback control circuitry is configured to tune the photonics-based component based, at least in part, on the digital signal output from the ADC circuitry.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: August 9, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Carlos Dorta-Quinones, Carl Ramey, Omer Ozgur Yildirim, Chithira Ravi, Shashank Gupta, Nicholas C. Harris
  • Patent number: 11398871
    Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: July 26, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
  • Patent number: 11367711
    Abstract: A memory device is described. The memory device comprises a plurality of stacked memory layers, wherein each of the plurality of stacked memory layers comprises a plurality of memory cells. The memory device further comprises an optical die bonded to the plurality of stacked memory layers and in electrical communication with the stacked memory layers through one or more interconnects. The optical die comprises an optical transceiver, and a memory controller configured to control read and/or write operations of the stacked memory layers. The optical die may be positioned at one end of the plurality of stacked memory layers. The one or more interconnects may comprise one or more through silicon vias (TSV). The plurality of memory cells may comprise a plurality of solid state memory cells. The memory devices described herein can enable all-to-all, point-to-multipoint and ring architectures for connecting logic units with memory devices.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: June 21, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey
  • Publication number: 20220094443
    Abstract: Aspects relate to a photonic processing system, a photonic processor, and a method of performing matrix-vector multiplication. An optical encoder may encode an input vector into a first plurality of optical signals. A photonic processor may receive the first plurality of optical signals; perform a plurality of operations on the first plurality of optical signals, the plurality of operations implementing a matrix multiplication of the input vector by a matrix; and output a second plurality of optical signals representing an output vector. An optical receiver may detect the second plurality of optical signals and output an electrical digital representation of the output vector.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Carl Ramey
  • Patent number: 11256029
    Abstract: Photonic packages are described. One such photonic package includes a photonic chip, an application specific integrated circuit, and optionally, an interposer. The photonic chip includes photonic microelectromechanical system (MEMS) devices. A photonic package may include a material layer patterned to include recesses. The recesses are aligned with the photonic MEMS devices so as to form enclosed cavities around the photonic MEMS devices. This arrangement preserves the integrity of the photonic MEMS devices.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 22, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Sukeshwar Kannan, Carl Ramey, Michael Gould, Nicholas C. Harris
  • Publication number: 20220029730
    Abstract: Systems and methods for increasing throughput of a photonic processor by using photonic degrees of freedom (DOF) are provided. The photonic processor includes a multiplexer configured to multiplex, using at least one photonic DOF, multiple encoded optical signals into a multiplexed optical signal. The photonic processor also includes a detector coupled to an output of an optical path including the multiplexer, the detector being configured to generate a first current based on the multiplexed optical signal or a demultiplexed portion of the multiplexed optical signal. The photonic processor further includes a modulator coupled to and output of the detector, the modulator being configured to generate a second current by modulating the first current.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 27, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Darius Bunandar, Michael Gould, Nicholas C. Harris, Carl Ramey
  • Patent number: 11218227
    Abstract: Aspects relate to a photonic processing system, a photonic processor, and a method of performing matrix-vector multiplication. An optical encoder may encode an input vector into a first plurality of optical signals. A photonic processor may receive the first plurality of optical signals; perform a plurality of operations on the first plurality of optical signals, the plurality of operations implementing a matrix multiplication of the input vector by a matrix; and output a second plurality of optical signals representing an output vector. An optical receiver may detect the second plurality of optical signals and output an electrical digital representation of the output vector.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: January 4, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Carl Ramey
  • Publication number: 20210405682
    Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
  • Publication number: 20210365240
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Application
    Filed: August 10, 2021
    Publication date: November 25, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Patent number: 11169780
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: November 9, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Publication number: 20210333818
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix multiplications (e.g., matrix vector multiplications). Matrix multiplications are broken down in scalar multiplications and scalar additions. Some embodiments relate to devices for performing scalar additions in the optical domain. One optical adder, for example, includes an interferometer having a plurality of phase shifters and a coherent detector. Leveraging the high-speed characteristics of these optical adders, some processors are sufficiently fast to support clocks in the tens of gigahertz of frequency, which represent a significant improvement over conventional electronic processors.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 28, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Anthony Kopa, Carl Ramey, Darius Bunandar, Michael Gould
  • Publication number: 20210278590
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 11093215
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: August 17, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones