Patents by Inventor Catherine A. Faler

Catherine A. Faler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230406967
    Abstract: The invention relates to a non-aromatic hydrocarbon soluble catalyst compound represented by the formula: wherein: M is a Group 4 metal; each X is independently a leaving group, such as an anionic leaving group; m is 1, 2 or 3; L is a Group 15 or 16 element; Y and Z are independently phosphorus, nitrogen sulfur, or oxygen; R1 and R2 are, independently, a C1 to C20 (such as C1 to C3) hydrocarbon group, a heteroatom containing group, silicon, germanium, tin, lead, or phosphorus, or R1 and R2 are interconnected to each other; R3 may be absent or may be a hydrocarbon group, a hydrogen, a halogen, a heteroatom containing group; and each R4 and R5 is independently a substituted C5 to C22 aromatic group, wherein the catalyst compound is soluble in non-aromatic hydrocarbons.
    Type: Application
    Filed: October 26, 2021
    Publication date: December 21, 2023
    Inventors: Catherine A. FALER, Margaret T. WHALLEY
  • Publication number: 20230357454
    Abstract: In some embodiments, a process includes introducing a catalyst solution, via a first line, into a reactor. The catalyst solution includes a catalyst and a first non- aromatic diluent. The process includes introducing an activator solution, via a second line, into the reactor. The activator solution includes an activator and a second non-aromatic diluent. The second non-aromatic diluent is the same as or different than the first non- aromatic diluent. The process includes operating the reactor under process conditions and obtaining an effluent from the reactor. The effluent includes a polyolefin. The first line and the second line are coupled with the reactor.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 9, 2023
    Inventors: Aaron H. Reed, Chase A. Eckert, Bradley T. Payne, Catherine A. Faler
  • Patent number: 11760814
    Abstract: This disclosure is generally directed to polymerization catalysts derived from 1,5-diazabicyclooctanes, catalyst systems utilizing such catalysts, and processes to polymerize alpha olefins therewith.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: September 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gursu Culcu, Catherine A. Faler
  • Patent number: 11746163
    Abstract: The present disclosure describes highly soluble activators for use in olefin polymerization processes. These activators are ionic ammonium borates and have the general formula [Ar(ER1R2H)(R3)][tetrakis(perfluoroaryl)borate] where Ar is an aromatic group; E is nitrogen or phosphorous; R1 is independently selected from aliphatic hydrocarbyl groups containing 1 to 30 carbon atoms, preferentially methyl; R2 and R3 are independently selected from aliphatic hydrocarbyl groups containing 10 to 30 carbon atoms and at least one internal olefin. The inventive activators dissolve in isohexane or methylcyclohexane at 25° C. to form homogeneous solutions of at least 10 mM concentration. When combined with a group 4 metallocene to form an active olefin polymerization catalyst, the inventive activators are shown to have activity similar to controls.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: September 5, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley
  • Patent number: 11661465
    Abstract: The present disclosure generally relates to process to produce a poly alpha-olefin (PAO), comprising: a) introducing a first alpha-olefin to a first catalyst system comprising non-aromatic hydrocarbon soluble activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions, wherein the first alpha-olefin is preferably introduced to the reactor at a flow rate of about 100 g/hr or more, to form a first reactor effluent comprising PAO (such as at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more); and b) introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition comprising an acid catalyst, such as BF3, in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: May 30, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jennifer L. Rapp, Patrick C. Chen, Jo Ann M. Canich, Mark H. Li, Jian Yang, Catherine A. Faler, Margaret T. Whalley, Andrew E. Atalla
  • Patent number: 11649256
    Abstract: The present disclosure provides catalyst compounds represented by Formula (I): where Q is OR13, SR13, NR13R14, PR13R14, or a heterocyclic ring; each R1-14 is independently hydrogen, C1-C40 hydrocarbyl, substituted C1-C40 hydrocarbyl, a heteroatom, or a heteroatom-containing group, or multiple R1-14 are joined together to form a C4-C62 cyclic, heterocyclic, or polycyclic ring structure, or combination(s) thereof; each X1 and X2 is independently C1-C20 hydrocarbyl, substituted C1-C20 hydrocarbyl, a heteroatom, or a heteroatom-containing group, or X1 and X2 join together to form a C4-C62 cyclic, heterocyclic, or polycyclic ring structure; and Y is a hydrocarbyl. The present disclosure also provides catalyst systems including an activator, a support, and a catalyst of the present disclosure. The present disclosure also provides polymerization processes including introducing olefin monomers to a catalyst system.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: May 16, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gursu Culcu, Catherine A. Faler, Crisita Carmen H. Atienza, David A. Cano, John R. Hagadorn
  • Patent number: 11584707
    Abstract: The present disclosure provides borate or aluminate activators comprising cations having linear alkyl groups, catalyst systems comprising, and methods for polymerizing olefins using such activators.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: February 21, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley, John R. Hagadorn
  • Patent number: 11572423
    Abstract: The present disclosure provides methods and systems for introducing an activator to a polymerization reactor. The methods may include introducing liquid activator to a mixing vessel or an inline mixer and mixing aliphatic hydrocarbon solvent to form an activator solution which is introduced to a polymerization reactor. The systems may include a storage vessel, a mixing vessel or inline mixer configured to mix a liquid activator with a hydrocarbon solvent, and a polymerization reactor. The present disclosure also provides a process for producing a polyolefin. The process may include introducing liquid activator to an inline mixer and mixing an aliphatic hydrocarbon solvent with the liquid activator to form an activator solution. The process may include introducing the activator solution, a catalyst, and an olefin feed to a polymerization reactor.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 7, 2023
    Assignee: EXXONMOBIL CHEMICALS PATENTS INC.
    Inventors: Aaron H. Reed, Rong Ma, Catherine A. Faler
  • Publication number: 20230002514
    Abstract: Non-coordinating borate activators deposited upon a support material may be effective for promoting olefin polymerization in the presence of a suitable transition metal complex, particularly for gas phase and slurry polymerization reactions. The non-coordinating borate activators may be deposited upon the support material using substantially aliphatic hydrocarbon solvents, preferably in the absence of aromatic solvents, such as toluene.
    Type: Application
    Filed: August 4, 2020
    Publication date: January 5, 2023
    Inventors: Charles J. Harlan, Margaret T. Whalley, Catherine A. Faler, John R. Hagadorn
  • Publication number: 20220388946
    Abstract: Activators may comprise compounds represented by the Formula [Ar(EHR1R2)(OR3)]d+[Mk+Qn]d, wherein: Ar is an aryl group; E is nitrogen or phosphorous; R1 is a C1-C30, optionally substituted, linear alkyl group; R2 is a C1-C30, optionally substituted, linear alkyl group; R3 is a C10-C30, optionally substituted, linear alkyl group; M is an element selected from group 13 of the Periodic Table of the Elements; d is 1, 2 or 3; k is 1, 2, or 3; n is 1, 2, 3, 4, 5, or 6; n?k=d; and each Q is independently hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, or halosubstituted-hydrocarbyl radical. Catalysts systems may comprise these activators and methods of preparing polyolefins may use these catalysts systems.
    Type: Application
    Filed: August 4, 2020
    Publication date: December 8, 2022
    Inventors: Catherine A. Faler, Margaret T. Whalley
  • Publication number: 20220298273
    Abstract: A process for making a poly alpha-olefin (PAO) having high vinylidene content (or combined vinylidene and tri-substituted vinylene content) and low vinyl and/or di-substituted vinylene content, as well as a relatively low molecular weight comprising contacting a feed containing a C6-C32 alpha-olefin with a catalyst system comprising non-aromatic-hydrocarbon soluble activator and a metallocene compound, typically a cyclopentadienyl-tetrahydro-s-indacenyl group 4 transition metal compound.
    Type: Application
    Filed: July 28, 2020
    Publication date: September 22, 2022
    Inventors: Jo Ann M. Canich, Jian Yang, Jennifer L. Rapp, Catherine A. Faler, Margaret T. Whalley
  • Publication number: 20220282004
    Abstract: The present disclosure is related to activator compounds represented by: [Ar(E1R1R2H)x(E2R3R4)y][QR5R6R7R8]z In the formula Ar is a C6-C30 aromatic hydrocarbyl group, provided that if Ar is a multicyclic ring, then each E1 and each E2 are substitutions on a single ring. Also, x is 1 to 4; y is 0 to 3; z=x; and x+y is 2 to 6. Each of E1 and E2 are independently selected from nitrogen or phosphorous and Q is selected from group 13 of the Periodic Table of the Elements. Additionally, each of R1, R2, R3, and R4 are independently selected from C1-C40 aliphatic hydrocarbyl, substituted C1-C40 aliphatic hydrocarbyl and each of R5, R6, R7, and R8 is independently a C6-C24 hydrocarbyl or a C6-C24 substituted hydrocarbyl. The present disclosure also relates to catalyst systems including a catalyst and the activator compound. Also, the present disclosure relates to methods of polymerizing olefins.
    Type: Application
    Filed: July 28, 2020
    Publication date: September 8, 2022
    Inventors: Catherine A. Faler, Margaret T. Whalley, John R. Hagadorn
  • Patent number: 11414436
    Abstract: The present disclosure provides borate or aluminate activators comprising cations having linear alkyl groups, catalyst systems comprising, and methods for polymerizing olefins using such activators. Specifically, the present disclosure provides activator compounds represented by Formula: [R1R2R3EH]d+[Mk+Qn]d?, wherein: E is nitrogen or phosphorous; d is 1, 2 or 3; k is 1, 2, or 3; n is 1, 2, 3, 4, 5, or 6; n?k=d; R1 is C1-C20 linear alkyl group; each of R2 and R3 is a C1-C40 linear alkyl group, a meta- and/or para-substituted phenyl group, an alkoxy group, a silyl group, a halogen, or a halogen containing group, wherein R1+R2+R3?15 carbon atoms; M is an element selected from group 13, typically B or Al; and each Q is independently a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, or halosubstituted-hydrocarbyl radical, provided that when Q is a fluorophenyl group, then R2 is not a C1-C40 linear alkyl group.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: August 16, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley, Peijun Jiang, John R. Hagadorn, Crisita Carmen H. Atienza, Alex E. Carpenter, George Rodriguez
  • Publication number: 20220220229
    Abstract: The present disclosure describes highly soluble activators for use in olefin polymerization processes. These activators are ionic ammonium borates and have the general formula [Ar(ER1R2H)(R3)][tetrakis(perfluoroaryl)borate] where Ar is an aromatic group; E is nitrogen or phosphorous; R1 is independently selected from aliphatic hydrocarbyl groups containing 1 to 30 carbon atoms, preferentially methyl; R2 and R3 are independently selected from aliphatic hydrocarbyl groups containing 10 to 30 carbon atoms and at least one internal olefin. The inventive activators dissolve in isohexane or methylcyclohexane at 25° C. to form homogeneous solutions of at least 10 mM concentration. When combined with a group 4 metallocene to form an active olefin polymerization catalyst, the inventive activators are shown to have activity similar to controls.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 14, 2022
    Inventors: Catherine A. Faler, Margaret T. Whalley
  • Patent number: 11285465
    Abstract: The present disclosure provides catalyst compounds including a nonsymmetric bridged amine bis(phenolate), catalyst systems including such, and uses thereof. Catalyst compounds, catalyst systems, and processes of the present disclosure can provide high comonomer content and high molecular weight polymers having narrow Mw/Mn values, contributing to good processability for the polymer itself and for the polymer used in a composition.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 29, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, David A. Cano, Catherine A. Faler, Margaret T. Whalley
  • Patent number: 11254763
    Abstract: This invention relates to transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: February 22, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Michelle E. Titone, Alex E. Carpenter, Catherine A. Faler, Jo Ann M. Canich
  • Publication number: 20210284763
    Abstract: This disclosure is generally directed to polymerization catalysts derived from 1,5-diazabicyclooctanes, catalyst systems utilizing such catalysts, and processes to polymerize alpha olefins therewith.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 16, 2021
    Inventors: Gursu Culcu, Catherine A. Faler
  • Patent number: 11117908
    Abstract: The present disclosure provides borate activators comprising cations having linear alkyl groups, catalyst systems comprising, and processes for polymerizing olefins using such activators. Specifically, the present disclosure provides polymerization activator compounds which may be prepared in, and which are soluble in aliphatic hydrocarbon and alicyclic hydrocarbon solvents.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 14, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley, John R. Hagadorn
  • Patent number: 11091567
    Abstract: The present disclosure relates to amido-benzoquinone transition metal complexes, catalyst systems including amido-benzoquinone transition metal complexes, and polymerization processes to produce polyolefin polymers such as polyethylene-based polymers and polypropylene-based polymers.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: August 17, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tzu-Pin Lin, Lubin Luo, Alex E. Carpenter, Gursu Culcu, Catherine A. Faler, Irene C. Cai, John R. Hagadorn, Jo Ann M. Canich
  • Patent number: 11066494
    Abstract: The present disclosure provides catalyst compounds having an amine bridged anilide phenolate ligand. In at least one embodiment, catalysts of the present disclosure provide catalyst activity values of about 90 gP/mmolCat·h?1 or greater and polyolefins, such as polyethylene copolymers, having comonomer content of from about 4 wt % to about 12 wt %, an Mn of about 90,000 g/mol or more, an Mw of 155,000 g/mol or more, and an Mw/Mn of from 1 to 2.5.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: July 20, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, David A. Cano, Catherine A. Faler, Margaret T. Whalley