Patents by Inventor Cenk Acar

Cenk Acar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9278845
    Abstract: Various examples include microelectromechanical die for sensing motion that includes symmetrical proof-mass electrodes interdigitated with asymmetrical stator electrodes. Some of these examples include electrodes that are curved around an axis orthogonal to the plane in which the electrodes are disposed. An example provides vertical flexures coupling an inner gimbal to a proof-mass in a manner permitting flexure around a horizontal axis.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: March 8, 2016
    Assignee: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventor: Cenk Acar
  • Patent number: 9278846
    Abstract: The device layer of a 6-degrees-of-freedom (6-DOF) inertial measurement system can include a single proof-mass 6-axis inertial sensor formed in an x-y plane, the inertial sensor including: a main proof-mass section suspended about a single, central anchor; a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor; and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion. The drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: March 8, 2016
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Patent number: 9246018
    Abstract: This document discusses, among other things, a cap wafer and a via wafer configured to encapsulate a single proof-mass 3-axis gyroscope formed in an x-y plane of a device layer. The single proof-mass 3-axis gyroscope can include a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope sensor, a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: January 26, 2016
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Publication number: 20150321904
    Abstract: This document refers to multi-die micromechanical system (MEMS) packages. In an example, a multi-die MEMS package can include a controller integrated circuit (IC) configured to couple to a circuit board, a MEMS IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.
    Type: Application
    Filed: July 21, 2015
    Publication date: November 12, 2015
    Inventors: Janusz Bryzek, John Gardner Bloomsburgh, Cenk Acar
  • Patent number: 9156673
    Abstract: One example includes an integrated circuit including at least one electrical interconnects disposed on an elongate are extending away from a main portion of the integrated circuit and a microelectromechanical layer including an oscillating portion, the microelectromechanical layer coupled to the main portion of the integrated circuit.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: October 13, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Janusz Bryzek, John Gardner Bloomsburgh, Cenk Acar
  • Patent number: 9095072
    Abstract: This document refers to multi-die micromechanical system (MEMS) packages. In an example, a multi-die MEMS package can include a controller integrated circuit (IC) configured to couple to a circuit board, a MEMS IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 28, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Janusz Bryzek, John Gardner Bloomsburgh, Cenk Acar
  • Publication number: 20150185012
    Abstract: This document discusses among other things apparatus and methods for a proof mass including split z-axis portions. An example proof mass can include a center portion configured to anchor the proof-mass to an adjacent layer, a first z-axis portion configure to rotate about a first axis using a first hinge, the first axis parallel to an x-y plane orthogonal to a z-axis, a second z-axis portion configure to rotate about a second axis using a second hinge, the second axis parallel to the x-y plane, wherein the first z-axis portion is configured to rotate independent of the second z-axis portion.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 2, 2015
    Inventor: Cenk Acar
  • Patent number: 9062972
    Abstract: This document discusses, among other things, an inertial sensor including a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer. The inertial sensor further includes first and second electrode stator frames formed in the x-y plane of the device layer on respective first and second sides of the inertial sensor, the first and second electrode stator frames symmetric about the single, central anchor, and each separately including a central platform and an anchor configured to fix the central platform to the via wafer, wherein the anchors for the first and second electrode stator frames are asymmetric along the central platforms with respect to the single, central anchor.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 23, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Cenk Acar, John Gardner Bloomsburgh
  • Patent number: 9021880
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using x-axis gyroscopes, y-axis gyroscopes, z-axis gyroscopes, two-axis accelerometers and three-axis accelerometers. Combining fabrication processes for such devices can enable the monolithic integration of six inertial sensing axes on a single substrate, such as a single glass substrate. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 5, 2015
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Philip Jason Stephanou, Cenk Acar, Ravindra Vaman Shenoy, David William Burns, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi
  • Patent number: 9006846
    Abstract: This document refers to apparatus and methods for a device layer of a microelectromechanical system (MEMS) sensor having vias with reduced shunt capacitance. In an example, a device layer can include a substrate having a pair of trenches separated in a horizontal direction by a portion of the substrate, wherein each trench of the pair of trenches includes first and second vertical layers including dielectric, the first and second vertical layers separated by a third vertical layer including polysilicon.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 14, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Janusz Bryzek, John Gardner Bloomsburgh, Cenk Acar
  • Patent number: 9000656
    Abstract: This disclosure provides systems, apparatus, and devices and methods of fabrication for electromechanical devices. In one implementation, an apparatus includes a metal proof mass and a piezoelectric component as part of a MEMS device. Such apparatus can be particularly useful for MEMS gyroscope devices. For instance, the metal proof mass, which may have a density several times larger than that of silicon, is capable of reducing the quadrature and bias error in a MEMS gyroscope device, and capable of increasing the sensitivity of the MEMS gyroscope device.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 7, 2015
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Justin Phelps Black, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Kurt Edward Peterson, Cenk Acar, Ravindra Vaman Shenoy, Nicholas Ian Buchan
  • Patent number: 8978475
    Abstract: This document discusses among other things apparatus and methods for a proof mass including split z-axis portions. An example proof mass can include a center portion configured to anchor the proof-mass to an adjacent layer, a first z-axis portion configure to rotate about a first axis using a first hinge, the first axis parallel to an x-y plane orthogonal to a z-axis, a second z-axis portion configure to rotate about a second axis using a second hinge, the second axis parallel to the x-y plane, wherein the first z-axis portion is configured to rotate independent of the second z-axis portion.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 17, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Patent number: 8813564
    Abstract: Various examples include microelectromechanical die for sensing motion that includes symmetrical proof-mass electrodes interdigitated with asymmetrical stator electrodes. Some of these examples include electrodes that are curved around an axis orthogonal to the plane in which the electrodes are disposed. An example provides vertical flexures coupling an inner gimbal to a proof-mass in a manner permitting flexure around a horizontal axis.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: August 26, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Patent number: 8739626
    Abstract: A micromachined inertial sensor with a single proof-mass for measuring 6-degree-of-motions. The single proof-mass includes a frame, an x-axis proof mass section attached to the frame by a first flexure, and a y-axis proof mass section attached to the frame by a second flexure. The single proof-mass is formed in a micromachined structural layer and is adapted to measure angular rates about three axes with a single drive motion and linear accelerations about the three axes.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: June 3, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Patent number: 8710599
    Abstract: Micromachined devices and methods for making the devices. The device includes: a first wafer having at least one via; and a second wafer having a micro-electromechanical-systems (MEMS) layer. The first wafer is bonded to the second wafer. The via forms a closed loop when viewed in a direction normal to the top surface of the first wafer to thereby define an island electrically isolated. The method for fabricating the device includes: providing a first wafer having at least one via; bonding a second wafer having a substantially uniform thickness to the first wafer; and etching the bonded second wafer to form a micro-electromechanical-systems (MEMS) layer.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 29, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: David Lambe Marx, Cenk Acar, Sandeep Akkaraju, Janusz Bryzek
  • Publication number: 20140041174
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Some gyroscopes include a drive frame, a central anchor and a plurality of drive beams disposed on opposing sides of the central anchor. The drive beams may connect the drive frame to the central anchor. The drive beams may include a piezoelectric layer and may be configured to cause the drive frame to oscillate torsionally in a plane of the drive beams. The gyroscope may also include a proof mass and a plurality of piezoelectric sense beams. At least some components may be formed from plated metal. The drive frame may be disposed within the proof mass. The drive beams may constrain the drive frame to rotate substantially in the plane of the drive beams. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20140013557
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a sense frame, a proof mass disposed outside the sense frame, a pair of anchors and a plurality of drive beams. The plurality of drive beams may be disposed on opposing sides of the sense frame and between the pair of anchors. The drive beams may connect the sense frame to the proof mass. The drive beams may be configured to cause torsional oscillations of the proof mass substantially in a first plane of the drive beams. The sense frame may be substantially decoupled from the drive motions of the proof mass. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: July 31, 2013
    Publication date: January 16, 2014
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20130341737
    Abstract: One example includes an integrated circuit including at least one electrical interconnects disposed on an elongate are extending away from a main portion of the integrated circuit and a microelectromechanical layer including an oscillating portion, the microelectromechanical layer coupled to the main portion of the integrated circuit.
    Type: Application
    Filed: September 18, 2011
    Publication date: December 26, 2013
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Janusz Bryzek, John Gardner Bloomsburgh, Cenk Acar
  • Publication number: 20130333175
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for making and using gyroscopes. Such gyroscopes may include a central anchor, a sense frame disposed around the central anchor, a plurality of sense beams configured for connecting the sense frame to the central anchor and a drive frame disposed around and coupled to the sense frame. The gyroscope may include pairs of drive beams disposed on opposing sides of the sense frame. The gyroscope may include a drive frame suspension for substantially restricting a drive motion of the drive frame to that of a substantially linear displacement along the first axis. The sense frame may be substantially decoupled from drive motions of the drive frame. Such devices may be included in a mobile device, such as a mobile display device.
    Type: Application
    Filed: July 31, 2013
    Publication date: December 19, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Cenk Acar, Ravindra V. Shenoy, Justin Phelps Black, Kurt Edward Petersen, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou
  • Publication number: 20130328139
    Abstract: This document discusses, among other things, a cap wafer and a via wafer configured to encapsulate a single proof-mass 3-axis gyroscope formed in an x-y plane of a device layer. The single proof-mass 3-axis gyroscope can include a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope sensor, a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.
    Type: Application
    Filed: September 18, 2011
    Publication date: December 12, 2013
    Applicant: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar