Patents by Inventor Chad P. Boudreaux

Chad P. Boudreaux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180146977
    Abstract: A surgical instrument having a transmission assembly, a transducer, and a handle assembly is configured for coupling the transmission assembly to the handle assembly using a locking mechanism. The locking mechanism is operable to restrict the rotational movement of an actuator coupling member and the transducer relative to the handle assembly. The locking mechanism may also be operable to lock a trigger of the handle assembly in a first position. An inner tubular actuating member of the transmission assembly may be threadably attachable to the actuator coupling member or the actuator coupling member may include a latching mechanism to couple to a flared portion of the inner tubular actuating member. A waveguide of the transmission assembly may also be threadably attachable to the transducer. In one alternative, the trigger may be configured to operate the locking mechanism, either in the first position or when pivoted distally to a third position.
    Type: Application
    Filed: December 18, 2017
    Publication date: May 31, 2018
    Inventors: Chad P. Boudreaux, Kevin L. Houser
  • Patent number: 9980769
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: May 29, 2018
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20180132926
    Abstract: A surgical instrument includes an end effector that has an ultrasonic blade and a clamp arm that is movable relative to the ultrasonic blade from an opened position toward a closed position. The ultrasonic blade and the clamp arm are able to receive tissue in the opened position, and the clamp arm is able to clamp tissue against the ultrasonic blade in the closed position. There is a first electrode connected with the clamp arm, and a second electrode associated with the ultrasonic blade. The electrodes are able to apply bipolar radiofrequency (RF) energy to tissue captured in the end effector. The instrument further has a first button for activating the ultrasonic blade to provide a cutting and sealing mode at the end effector. There is also a second button for activating the electrodes to provide a spot coagulation mode at the end effector.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 17, 2018
    Inventors: Ryan M. Asher, Chad P. Boudreaux, Kristen G. Denzinger, Cameron R. Nott, Eitan T. Wiener
  • Publication number: 20180132887
    Abstract: A surgical instrument includes an ultrasonic waveguide extending through a body assembly. An ultrasonic blade connects to the ultrasonic waveguide. A clamp arm assembly of the surgical instrument is able to move from an opened position for receiving a tissue toward a closed position for clamping the tissue. The clamp arm assembly includes a clamp body and a clamp pad facing the ultrasonic blade. A clamp arm actuator of the surgical instrument is able to move from a first position toward a second position to direct the clamp arm assembly from the opened position toward the closed position. A modular coupling of the surgical instrument connects to the clamp pad such that at least the clamp pad can be disconnected relative to the ultrasonic blade for replacement thereof.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 17, 2018
    Inventors: Ryan M. Asher, Gregory D. Bishop, Brian D. Black, Chad P. Boudreaux, David J. Cagle, William E. Clem, Joseph Dennis, Kristen G. Denzinger, Benjamin D. Dickerson, Kevin M. Fiebig, Ellen Gentry, Christina M. Hough, John V. Hunt, Cody R. Jackson, Cory G. Kimball, Jeffrey D. Messerly, Gabriel I. Myers, Ion V. Nicolaescu, William A. Olson, Candice Otrembiak, Foster B. Stulen, John K. Swain, Gregory A. Trees, John A. Weed, III, William B. Weisenburgh, II, Eitan T. Wiener, Barry C. Worrell, David C. Yates, Monica L. Zeckel
  • Publication number: 20180132883
    Abstract: A surgical instrument has a first modular assembly and a second modular assembly. The first modular assembly has a body, an ultrasonic waveguide, an ultrasonic blade connected to a distal end of the ultrasonic waveguide, and a coupling member that movably couples with the body. The second modular assembly has a clamp arm assembly with a first pivot coupling, a clamp pad assembly with a second pivot coupling, and a distal outer sheath that selectively couples to the body of the first modular assembly via the coupling member. The distal outer sheath has an interior surface that houses a portion of the ultrasonic waveguide, and this interior surface also houses the first pivot coupling and the second pivot coupling.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 17, 2018
    Inventors: Ryan M. Asher, Chad P. Boudreaux, Joseph Dennis, Wei Guo, Bryce L. Heitman, James A. McCrea, Patrick J. Minnelli, Yachuan Yu, Monica L. Zeckel, Junhua Zhu
  • Patent number: 9949788
    Abstract: In one embodiment, a surgical instrument comprises a handle assembly. The handle assembly comprises a first translatable member defining a notch, a lockout lever comprising a cam surface and a detent, a closure trigger, a jaw position sensor comprising a switch in a first state, and a translatable cam operatively coupled to the closure trigger. The detent of the lockout lever is configured to engage the notch of the first translatable member. In response to actuation of the closure trigger, the translatable cam is configured to slidably interface with the cam surface of the lockout lever to cause the lockout lever to: (i) disengage the detent of the lockout lever from the notch of the first translatable member, and (ii) actuate the jaw position sensor switch to a second state.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 24, 2018
    Assignee: Ethicon Endo-Surgery, LLC
    Inventor: Chad P. Boudreaux
  • Publication number: 20180085156
    Abstract: An end effector of an electrosurgical device may include a discharge port in communication with a first fluid path, an aspiration port in communication with a second fluid path, a first and second electrode, and a diverter in mechanical communication with the two electrodes. The diverter may receive, on its surface, a fluid emitted by the discharge port, and maintain a contact of the fluid with the first and second electrodes. The diverter may be further configured to prevent an aspiration, by the aspiration port, of the fluid on its surface. An electrosurgical device may include a source port in communication with a first fluid path, an evacuation port in communication with a second fluid path, a first and second electrode, and a housing. The device may include a shaft extending distally from the housing and the end effector as described above.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: David A. Witt, Frederick E. Shelton, IV, David C. Yates, Chad P. Boudreaux, Eric M. Roberson, Kevin L. Houser, Geoffrey S. Strobl
  • Patent number: 9918730
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: March 20, 2018
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner
  • Patent number: 9913655
    Abstract: A surgical system comprises an end effector for operating on tissue and a screen positioned around the end effector. The screen is fluidly coupled with a suction source by a conduit such as a tube. The screen is configured to communicate suction through the screen while preventing tissue from contacting the end effector. The screen is further configured to retract proximally relative to the end effector to thereby expose the end effector.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: March 13, 2018
    Assignee: Ethicon LLC
    Inventors: Charles J. Scheib, Edward G. Chekan, Chad P. Boudreaux, Frederick E. Shelton, IV, Tamara S. Vetro Widenhouse
  • Publication number: 20180055532
    Abstract: Various ultrasonic surgical instruments are disclosed. At least one disclosed surgical instrument includes a waveguide including a blade and a transducer base plate. The transducer base plate coupled to the waveguide to define a joint at an interface between the waveguide and the transducer base plate. The transducer base plate including first and second sides defining corresponding first and second flat faces configured to receive first and second piezoelectric elements. The first and second piezoelectric elements are configured to operate in a D31 mode.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 1, 2018
    Inventors: Jeffrey D. Messerly, Brian D. Black, Frederick Estera, Jason R. Lesko, Benjamin M. Boyd, Kevin M. Fiebig, Chad P. Boudreaux, Grace E. Waters, Kristen G. Denzinger, Amy M. Krumm, Amelia Pierce, Chad E. Eckert, Joseph D. Dennis, Ion V. Nicolaescu, Monica L. Zeckel, William A. Olson, Patrick J. Scoggins, Larry A. Pummill, JR., John S. Frazier, William A. Crawford, Brian J. Hemmelgarn, Eric Stout, Benjamin D. Dickerson
  • Patent number: 9877776
    Abstract: A surgical instrument includes an end effector and a handle assembly. The end effector includes a movable jaw and a cutting element slidably movable within the end effector. The handle assembly includes an energy button configured to deliver energy to at least one electrode located in the end effector, a trigger plate operably coupled to a jaw closure mechanism, the trigger plate configured to close the movable jaw, a firing plate operably coupled to a cutting element drive mechanism. The firing plate is configured to drive the cutting element independently of the jaw closure mechanism. The cutting element drive mechanism is configured to close the movable jaw when the cutting element is driven. The handle assembly further includes a trigger operatively coupled to the trigger plate and the firing plate. The jaw closure mechanism and the cutting element drive mechanism are configured to simultaneously close the movable jaw.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: January 30, 2018
    Assignee: Ethicon LLC
    Inventor: Chad P. Boudreaux
  • Publication number: 20180021082
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device's motor can begin providing power for grasping and/or cutting tissue in response to an output from the device's sensor, the device can adjust power provided by the motor based on whether the device is clamping tissue or is being fired, the device can adjust an amount of power provided by the motor based on an amount of user-applied force to the device's actuator and/or can control drive direction of the motor based on the amount of the force, the device can maintain a force applied to the device, the device can self-shift the motor, and/or the device can adjust an amount of power provided to the device's end effector based on a degree of the end effector's closure.
    Type: Application
    Filed: October 4, 2017
    Publication date: January 25, 2018
    Inventors: Gregory A. Trees, Eric N. Johnson, Chad P. Boudreaux, Robert Laird, Rudolph H. Nobis, Geoffrey S. Strobl, Jason R. Lesko, John A. Hibner, David C. Yates, David M. Locke, William B. Weisenburgh, II, Phillip Clauda
  • Patent number: 9872699
    Abstract: A surgical instrument having a transmission assembly, a transducer, and a handle assembly is configured for coupling the transmission assembly to the handle assembly using a locking mechanism. The locking mechanism is operable to restrict the rotational movement of an actuator coupling member and the transducer relative to the handle assembly. The locking mechanism may also be operable to lock a trigger of the handle assembly in a first position. An inner tubular actuating member of the transmission assembly may be threadably attachable to the actuator coupling member or the actuator coupling member may include a latching mechanism to couple to a flared portion of the inner tubular actuating member. A waveguide of the transmission assembly may also be threadably attachable to the transducer. In one alternative, the trigger may be configured to operate the locking mechanism, either in the first position or when pivoted distally to a third position.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 23, 2018
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Kevin L. Houser
  • Publication number: 20180008337
    Abstract: An apparatus comprises a first jaw, a second jaw, a first handle, and a second handle. The second jaw is pivotally coupled with the first jaw. The first jaw and the second jaw are configured to grasp tissue. The jaws provide offset electrode surfaces that are operable to deliver bipolar RF energy to tissue grasped between the jaws. The apparatus is further operable to sever tissue. A lockout feature selectively prevents tissue severing, based on an energization state of the jaws.
    Type: Application
    Filed: July 28, 2017
    Publication date: January 11, 2018
    Inventors: Chester O. Baxter, III, David C. Yates, Katherine J. Schmid, Taylor W. Aronhalt, Jeffrey S. Swayze, Jeffrey D. Messerly, Michael S. Cropper, Jerome R. Morgan, Chad P. Boudreaux, Richard W. Timm, Frederick E. Shelton, IV
  • Patent number: 9861428
    Abstract: A medical device includes an end effector configured to apply bipolar energy to target tissue along a working portion thereof and a fluid control system to control the flow of a fluid produced when the end effector applies the bipolar energy to heat the target tissue. The fluid control system includes a fluid path element defining a fluid path, a distal fluid port configured to intake the fluid adjacent to the working portion of an end effector for transport through the fluid path, and a proximal fluid port configured to intake the fluid transported through the fluid path and to exhaust the transported fluid.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: January 9, 2018
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Susan G. Arshonsky, Jonathan T. Batross, Chad P. Boudreaux, Edward G. Chekan, Catherine A. Corbett, Craig T. Davis, Alex W. Kiturkes, Terry A. McFarland, David A. Monroe, John M. Sarley, Frederick E. Shelton, IV, John B. Schulte, Foster B. Stulen, Aaron C. Voegele, William B. Weisenburgh, II, Tamara Widenhouse, David A. Witt
  • Publication number: 20170367752
    Abstract: Instruments and methods for providing selective surgical instrument trigger lockout are provided herein. In one embodiment, a surgical instrument can include a distal end effector, a proximal actuator portion, a first trigger, a second trigger, and a lock arm. The lock arm can be configured to move between a first position, in which it interferes with actuation of the first trigger, and a second position, in which it permits actuation of the first trigger. Further, actuation of the second trigger can be effective to move the lock arm from the first position to the second position. Actuation of the first trigger can therefore be prevented if the second trigger is not already actuated. Selective trigger lockout can be useful in a variety of instruments, including, for example, surgical instruments that grasp, seal, and transect tissue.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 28, 2017
    Inventors: Chad P. Boudreaux, Gregory A. Trees, Geoffrey S. Strobl
  • Patent number: 9844368
    Abstract: A surgical instrument system is disclosed. The surgical instrument system can include a handle and a plurality of shafts which can be selectively assembled to the handle. Each shaft can include an end effector, a drive system, and a system of sensors which can direct the operation of the handle during use.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: December 19, 2017
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Frederick E. Shelton, IV, Chester O. Baxter, III
  • Publication number: 20170348064
    Abstract: A robotic surgical system including a control circuit configured to: (i) generate an energy control signal to deliver an electrosurgical energy signal to a first electrode and a second electrode, (ii) measure a current supplied and a voltage applied to the first and second electrodes, (iii) calculate impedance based on the measured current and voltage, (iv) compare the calculated impedance to a predetermined impedance level, (v) generate a subsequent energy control signal to deliver a subsequent electrosurgical energy signal to the first and second electrodes, when the calculated impedance is less than the predetermined impedance level, by adjusting at least one energy signal characteristic between the delivered electrosurgical energy signal and the subsequent electrosurgical energy signal based on the calculated impedance, and (vi) generate a drive control signal to activate a blade when the calculated impedance is greater than or equal to the predetermined impedance level.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Randolph C. Stewart, Chad P. Boudreaux
  • Publication number: 20170340344
    Abstract: An apparatus includes a body assembly, an acoustic waveguide, an ultrasonic blade, and a liquid dispensing feature. The ultrasonic blade is positioned distally relative to the body assembly. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The liquid dispensing feature is positioned distally relative to the body assembly. The liquid dispensing feature is positioned adjacent to the ultrasonic blade. The liquid dispensing feature is configured to deliver a flow of cooling liquid to the ultrasonic blade.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Chad P. Boudreaux, Jeffrey D. Messerly, Kevin Bash, David A. Witt, Cory G. Kimball
  • Publication number: 20170333073
    Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.
    Type: Application
    Filed: April 19, 2017
    Publication date: November 23, 2017
    Inventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black