Patents by Inventor Chang-wook Moon

Chang-wook Moon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113316
    Abstract: The present invention relates to a high voltage-type redox flow battery comprising: a plurality of modules (1001, 1002, 1003, . . , 100n) which are serially connected; and a battery management system (BMS) for monitoring a state-of-charge (SOC) of each of the plurality of modules (1001, 1002, 1003, ..
    Type: Application
    Filed: December 29, 2021
    Publication date: April 4, 2024
    Inventors: Shin HAN, Jeehyang HUH, Woo-Yong KIM, Chang-sup MOON, Sei Wook OH, Dae Young YOU, Seung Seop HAN
  • Patent number: 9536881
    Abstract: Semiconductor devices are provided. The semiconductor devices include a first fin; a first gate electrode intersecting the first fin; a first elevated source and/or drain on respective sides of the first gate electrode on the first fin; and a first field dielectric film adjacent the first fin. The first field dielectric film includes a first part below a top surface of the first fin and a second part protruding from the first part and above a top surface of the first fin that makes contact with the first elevated source and/or drain.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: January 3, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Sung-Bong Kim, Chang-Wook Moon, Dong-Hun Lee, Hyung-Soon Jang, Sang-Pil Sim
  • Patent number: 9318573
    Abstract: A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate insulation layer formed on a silicon substrate, at least one nanorod embedded in the gate insulation layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate insulation layer between the source electrode and the drain electrode.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: April 19, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Wook Moon, Joong S. Jeon, Jung-hyun Lee, Nae-In Lee, Yeon-Sik Park, Hwa-Sung Rhee, Ho Lee, Se-Young Cho, Suk-Pil Kim
  • Publication number: 20140312427
    Abstract: Semiconductor devices are provided. The semiconductor devices include a first fin; a first gate electrode intersecting the first fin; a first elevated source and/or drain on respective sides of the first gate electrode on the first fin; and a first field dielectric film adjacent the first fin. The first field dielectric film includes a first part below a top surface of the first fin and a second part protruding from the first part and above a top surface of the first fin that makes contact with the first elevated source and/or drain.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 23, 2014
    Inventors: Shigenobu Maeda, Sung-Bong Kim, Chang-Wook Moon, Dong-Hun Lee, Hyung-Soon Jang, Sang-Pil Sim
  • Publication number: 20130344664
    Abstract: A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate oxide layer formed on a silicon substrate, at least one nanorod embedded in the gate oxide layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate oxide layer between the source electrode and the drain electrode.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang-Wook MOON, Joong S. JEON, Jung-hyun LEE, Nae-In LEE, Yeon-Sik PARK, Hwa-Sung RHEE, Ho LEE, Se-Young CHO, Suk-Pil KIM
  • Patent number: 8455854
    Abstract: A nonvolatile memory device may include a lower electrode, an oxide layer including an amorphous alloy metal oxide disposed on the lower electrode, and a diode structure disposed on the oxide layer.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: June 4, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choong-Rae Cho, Sung-Il Cho, In-Kyeong Yoo, Eun-Hong Lee, Chang-Wook Moon
  • Patent number: 8232613
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: July 31, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Patent number: 8193030
    Abstract: Nonvolatile memory devices may be fabricated to include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: June 5, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Patent number: 8125021
    Abstract: A non-volatile memory device includes a first oxide layer, a second oxide layer and a buffer layer formed on a lower electrode. An upper electrode is formed on the buffer layer. In one example, the lower electrode is composed of at least one of Pt, Ru, Ir, IrOx and an alloy thereof, the second oxide layer is a transition metal oxide, the buffer layer is composed of a p-type oxide and the upper electrode is composed of a material selected from Ni, Co, Cr, W, Cu or an alloy thereof.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: February 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choong-Rae Cho, Eun-Hong Lee, El Mostafa Bourim, Chang-Wook Moon
  • Publication number: 20110117735
    Abstract: Nonvolatile memory devices may be fabricated to include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Application
    Filed: January 3, 2011
    Publication date: May 19, 2011
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Publication number: 20110049587
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Application
    Filed: November 3, 2010
    Publication date: March 3, 2011
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Patent number: 7884410
    Abstract: Example embodiments may provide nonvolatile memory devices and example methods of fabricating nonvolatile memory devices. Example embodiment nonvolatile memory devices may include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Patent number: 7863142
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Patent number: 7859035
    Abstract: A storage node having a metal-insulator-metal structure, a non-volatile memory device including a storage node having a metal-insulator-metal (MIM) structure and a method of operating the same are provided. The memory device may include a switching element and a storage node connected to the switching element. The storage node may include a first metal layer, a first insulating layer and a second metal layer, sequentially stacked, and a nano-structure layer. The storage node may further include a second insulating layer and a third metal layer. The nano-structure layer, which is used as a carbon nano-structure layer, may include at least one fullerene layer.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Sang-mock Lee, In-kyeong Yoo, Seung-woon Lee, El Mostafa Bourim, Eun-hong Lee, Choong-rae Cho
  • Patent number: 7667481
    Abstract: A surface electron emission device array and a TFT inspection system for inspecting a TFT array using a surface electron emission device array may be provided. The TFT inspection system may include a surface electron emission device array, which may have a first electrode disposed to face the TFT array in a first direction, a second electrode disposed in a second direction intersecting the first direction in a region corresponding to a region in which the first electrode and a corresponding pixel electrode of the TFT array may be formed, and an insulating layer interposed between the first electrode and the second electrode.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: February 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Wook Moon, El Mostafa Bourim, Sung-Jin Lee, Seung-Woon Lee
  • Patent number: 7646003
    Abstract: A focusing apparatus and a lithography system using the same capable of adjusting a uniformity of an electromagnetic field by moving a portion of a magnetic field generator. The focusing apparatus may control a path of an electron beam generated from an electron-beam emitter of the lithography system. In the focusing apparatus, a uniformity of the magnetic field in the vacuum chamber may be adjusted through movement of the portion of the magnetic field generator with respect to the vacuum chamber.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: January 12, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Wook Moon, Dong-Soo Kim, Myung-Gon Song, Seung-Woon Lee, Yun-Sang Oh
  • Publication number: 20090146183
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Application
    Filed: April 4, 2008
    Publication date: June 11, 2009
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Publication number: 20080272366
    Abstract: A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate oxide layer formed on a silicon substrate, at least one nanorod embedded in the gate oxide layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate oxide layer between the source electrode and the drain electrode.
    Type: Application
    Filed: January 30, 2008
    Publication date: November 6, 2008
    Inventors: Chang-wook Moon, Joong S. Jeon, Jung-hyun Lee, Nae-in Lee, Yeon-sik Park, Hwa-sung Rhee, Ho Lee, Se-young Cho, Suk-pil Kim
  • Patent number: 7417271
    Abstract: An electrode structure having at least two oxide layers that more reliably switch and operate without the use of additional devices and a non-volatile memory device having the same are provided. The electrode structure may include a lower electrode, a first oxide layer formed on the lower electrode, a second oxide layer formed on the first oxide layer and an upper electrode formed on the second oxide layer wherein at least one of the first and second oxide layers may be formed of a resistance-varying material. The first oxide layer may be formed of an oxide having a variable oxidation state.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: August 26, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Stefanovich Genrikh, Choong-rae Cho, In-kyeong Yoo, Eun-hong Lee, Sung-Il Cho, Chang-wook Moon
  • Publication number: 20080191261
    Abstract: Example embodiments may provide nonvolatile memory devices and example methods of fabricating nonvolatile memory devices. Example embodiment nonvolatile memory devices may include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 14, 2008
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang