Patents by Inventor Channasandra Ravishankar

Channasandra Ravishankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10813078
    Abstract: A base station computer that includes a processor and memory storing instructions executable by the processor is described. The processor may be programmed to: determine a geographic position of a user terminal (UT); store the position in the memory; determine to page the UT; correlate a satellite beam based on the position; and page the UT via the satellite beam.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: October 20, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: Channasandra Ravishankar, Deepak Arur, Gaguk Zakaria
  • Publication number: 20200329527
    Abstract: A system is disclosed for providing low data rate broadcast services. Different types of broadcast packets are detected among data packets received an external network. The different types broadcast packets contain different a different broadcast content. When a particular type of broadcast packet is detected, a transmit data rate is selected and Walsh codes are assigned for achieving the transmit data rate. Data packets corresponding to the broadcast packets are compressed, and at least one RLC block containing the compressed data packets is created. The RLC blocks are transmitted from a satellite using the assigned Walsh codes.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 15, 2020
    Applicant: HUGHES NETWORK SYSTEMS, LLC
    Inventor: Channasandra RAVISHANKAR
  • Patent number: 10805850
    Abstract: A system and a method for directing a handover of communications in Radio Frequency (RF) networks at a UT. The method includes servicing a user terminal (UT) via a first network having a first coverage area; receiving, from the UT via the first network, a measurement report for a second network having a second coverage area based on a measurement configuration of the second network; sending, to the UT via the first network, a handover order for obtaining service from the second network; and establishing, via a second network RAN (radio access network), a service for the UT via the second network per the handover order. In the method, the first network may include either a terrestrial network (TN) or a non-terrestrial network (NTN), the second network may include other of the TN or the NTN, and the TN and the NTN are RF networks.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: October 13, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: Nassir Benammar, Channasandra Ravishankar, Gaguk Zakaria
  • Publication number: 20200322409
    Abstract: A system to provide second generation (2G) voice services over internet protocol, the system including: a voice gateway (VGW) including a 2G stack to communicate control plane information and user plane information with a 2G user terminal (UT) via a circuit-switched network without modifications to the 2G-UT, an Iu-CS IP stack, and a relay to map the control plane information between the 2G stack and the Iu-CS IP stack, and vice-versa; a mobile switching center (MSC), connected to the VGW via the Iu-CS IP stack, to manage and establish the voice services between the 2G-UT and a public switched telephone network (PSTN) based on the mapped control plane information; and a media gateway (MGW) connected to the VGW via the Iu-CS IP stack, where the MGW communicates the user plane information between the 2G-UT and the PSTN after the MSC 2-G UT vocoder, e.g. AMBE, has established voice services.
    Type: Application
    Filed: November 25, 2019
    Publication date: October 8, 2020
    Applicant: Hughes Network Systems, LLC
    Inventors: Channasandra RAVISHANKAR, Gaguk ZAKARIA
  • Patent number: 10742312
    Abstract: A system includes a terminal. The terminal includes a terrestrial communication interface, a satellite communication interface and a computer. The terrestrial and satellite communication interfaces are configured to communicate traffic data. The computer is communicatively linked to the terrestrial and satellite communication interfaces. The computer executes instructions comprising, to determine that the traffic data, communicated via the terrestrial communication interface, exceeds a threshold, and based on the determination, to route at least a portion of traffic data via the satellite communication interface in accordance with a predetermined traffic data load-balancing scheme.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: August 11, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: Satyajit Roy, Channasandra Ravishankar
  • Publication number: 20200213000
    Abstract: Methods, systems, and apparatus, including computer-readable media, for location management for satellite systems. In some implementations, a controller of a satellite network system receives location data from a user terminal and registers the user terminal in a mobility area with a core network. The controller updates a mapping between satellite beams and mobility areas as the satellite beams move along the ground with respect to the mobility areas, then uses the updated mapping to communicate with the user terminal using an appropriate satellite beam. In some implementations, a controller of a satellite network system determines a mapping of satellite beams to mobility areas, and broadcasts, for each of multiple satellite beams, a message indicating (i) a set of mobility areas that are at least partially covered by the satellite beam and (ii) an indication of boundaries of the mobility areas in the set of mobility areas.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Deepak Arur, Channasandra Ravishankar
  • Publication number: 20200213177
    Abstract: Half tone offset may be utilized to mitigate signal distortion caused by DC bias within OFDM-based systems. In addition a cyclic prefix may be utilized within an OFDM-based system to mitigate inter-symbol-interference. Presented herein are techniques and methods to efficiently apply a cyclic prefix to an OFDM symbol with half tone offset for low power systems.
    Type: Application
    Filed: February 4, 2020
    Publication date: July 2, 2020
    Inventors: James Jehong Jong, Channasandra Ravishankar, Billy James Whitmarsh
  • Publication number: 20200204250
    Abstract: Embodiments disclosed herein relate generally to techniques for mitigating blockages associated with satellite systems. More specifically, techniques disclosed herein, describe solutions for minimizing service interruption during satellite handover. One or more blockages associated with one or more user terminals that connect to a satellite system may be determined by various means. Utilizing those blockages, handover times for the one or more user terminals may be determined such that service interrupts may be minimized.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Inventors: Channasandra Ravishankar, John Corrigan, Deepak Arur
  • Patent number: 10631195
    Abstract: A method for reporting backlog in a LTE-like environment is disclosed. The method includes: providing a pending allocation for transferring a pending request data; receiving a new request for transferring data prior to completion of transferring the pending request data; generating a backlog report for the new request; sending the backlog report within the pending allocation; and receiving a new allocation for the new request data.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: April 21, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: Nassir Benammar, Channasandra Ravishankar
  • Patent number: 10609635
    Abstract: A method is provided for network equipment and resource sharing amongst service providers within a communications network. Parameters are determined, each associated with a an SP(ID) identifying a respective service provider. The Parameters relate to network parameters of a that are utilized for standard network processes unrelated to service provider identification. A control message is received, including a UT-ID associated with a user terminal (UT). The UT is associated with one service provider. The control message is received as part of configuration of network services for the UT. One of the Parameters is determined that is associated with the UT-ID, and one SP(ID) is determined that is associated with the determined Parameter. Communications channels are provided to the UT for network services. The communications channels are configured based on share parameters defining a share of network resources allocated to the service provider to which the determined SP(ID) corresponds.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: March 31, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: Channasandra Ravishankar, Nassir Benammar, Gaguk Zakaria
  • Patent number: 10608733
    Abstract: Approaches for ground-based beamforming for a very high throughput wireless communications system employing an airborne platform that generates a beam pattern via a multi-element antenna are provided. A beamformer includes a number of beamforming processors based on a frequency reuse scheme of the communications system. Each beamforming processor processes only the beam signals that are associated with a respective one of the frequencies of the reuse scheme, and thereby generates a component element signal for each of the elements of the array antenna that is associated with the respective frequency of that processor. Each beamforming processor applies a matrix of complex weights that is configured such that a composition of the component element signals for each antenna element facilitates the transmission of the element signals by the airborne platform to produce the beam pattern.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: March 31, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: Channasandra Ravishankar, John Corrigan
  • Publication number: 20200099443
    Abstract: A method for wireless data communications over a network is provided. Data packets are intended for a first terminal configured for a first communications protocol. Further data packets are intended for a second terminal configured for a second communications protocol and for the first protocol. The data packets are formatted as data bursts in accordance with the first protocol for transmission over a network channel that is configured based on the first protocol. The further data packets are formatted as data bursts in accordance with the second protocol for transmission over the network channel, and for transmission at a higher throughput rate of the second protocol (not compatible with the first protocol). The data bursts of the first protocol are transmitted over the channel for receipt by the first terminal. The data bursts of the second protocol are transmitted over the channel for receipt by the second terminal.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 26, 2020
    Inventors: Channasandra RAVISHANKAR, James Jehong JONG
  • Publication number: 20200100291
    Abstract: A data communications system, includes a data communications device (DCD), and at least one wireless access network, which includes a base station. The DCD generates a narrowband message which includes user-plane data of the DCD. The DCD transmits the narrowband message to the base station via a random access control-plane channel of the wireless access network, prior to any request for or establishment of a wireless or radio resource connection, or establishment of any dedicated radio bearers or wireless channels, between the DCD and the base station.
    Type: Application
    Filed: December 31, 2018
    Publication date: March 26, 2020
    Inventors: Channasandra RAVISHANKAR, James Jehong JONG, Gaguk ZAKARIA, Nassir BENAMMAR
  • Patent number: 10594535
    Abstract: Disclosed methods of terrestrial station monitoring of downlink signal quality include receiving a sequence of samples of reference symbol slots of a downlink burst, and estimating a time offset between a local clock and a timing of a symbol pattern carried by the reference symbol slots, using a local copy of the reference symbol pattern. A corresponding time correction is applied to the sequence of samples to form time corrected samples of symbols carried by the reference symbol slots. A frequency offset between the time corrected samples of the symbols carried by the reference symbol slots and a local clock is estimated. A corresponding frequency compensation is applied to the time corrected samples, forming time/frequency compensated samples of the symbols carried by the reference symbol slots. A signal to noise plus interference ratio (SNIR) estimation data, and corresponding estimate of signal path, is generated, based on moments of the time/frequency compensated samples.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 17, 2020
    Assignee: Hughes Network Systems, LLC.
    Inventors: James Jehong Jong, Santharam Gurumani, Channasandra Ravishankar
  • Patent number: 10574503
    Abstract: Half tone offset may be utilized to mitigate signal distortion caused by DC bias within OFDM-based systems. In addition a cyclic prefix may be utilized within an OFDM-based system to mitigate inter-symbol-interference. Presented herein are techniques and methods to efficiently apply a cyclic prefix to an OFDM symbol with half tone offset for low power systems.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 25, 2020
    Assignee: Hughes Network Systems, LLC
    Inventors: James Jehong Jong, Channasandra Ravishankar, Billy James Whitmarsh
  • Publication number: 20200036435
    Abstract: A satellite communications system includes both LEO and MEO satellites, a gateway node (GN) which includes a MEO-GN modem and a LEO-GN modem, and a user terminal (UT) which includes a MEO-UT modem and a LEO-UT modem. The MEO-GN modem transmits data communications to the UT via the MEO satellites. The MEO-UT modem receives the data communications from the MEO-GN modem. The MEO UT modem forwards control messages regarding the data communications received from the MEO-GN modem, via a control message tunnel, to the MEO-GN modem. Via the control message tunnel, (i) the MEO-UT modem provides the control messages to the UT-LEO modem, (ii) the LEO-UT modem transmits the control messages to the LEO-GN modem via the LEO satellites, and (iii) the LEO-GN modem provides the control messages to the MEO-GN modem.
    Type: Application
    Filed: March 15, 2019
    Publication date: January 30, 2020
    Inventors: Channasandra RAVISHANKAR, John CORRIGAN
  • Patent number: 10541745
    Abstract: A system and method for networked geofencing includes identifying restricted areas in a service region, and defining a protective zone surrounding the restricted areas. A service availability map containing the protective zones is generated and broadcast within the service region. The positions of terminals on the service availability map are detected relative to the protective zones. Terminals inside the protective zones establish communication using a first frequency range, and terminals outside of the protective zones establish communication using either the first frequency range or a second frequency range.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 21, 2020
    Assignee: HUGHES NETWORK SYSTEMS, LLC
    Inventors: Channasandra Ravishankar, Nassir Benammar
  • Patent number: 10509097
    Abstract: Each of a plurality of signal measurement circuits is included in a terminal. Each measurement circuit receives a signal from a transmitter in a satellite and measures characteristics of the signal. A computer is programmed to receive data from the signal measurement circuits. The data indicates characteristics of the signal, including a strength of the signal. The computer determines an initial estimated satellite pointing direction, and generates subsequent estimated satellite pointing directions. For the initial and subsequent estimated pointing directions, the strength of the signal received by each measurement circuit is compared with an expected strength of the signal based on the respective estimated pointing direction. Each subsequent estimate is based at least in part on the comparison of the immediately preceding estimate. Based on the comparisons, the computer estimates a current satellite pointing direction.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 17, 2019
    Assignee: Hughes Network Systems, LLC
    Inventors: Yash M. Vasavada, Channasandra Ravishankar, David Roos
  • Patent number: 10512018
    Abstract: Approaches for efficient, dynamic and continuous handover processes, which encompass selection of an optimal path (consisting of a satellite, a satellite beam and carrier frequency set) over which a mobile user terminal (UT) communicates with the radio access network in a mobile satellite communications system, are provided. A set of path factors are determined regarding each of a plurality of communications paths for the UT. A path selection metric (PSM) for each communications path is determined, wherein the PSM for each communications path is determined via a weighted calculation based on the respective set of path factors for the communications path. A decision is made as to whether to perform a handover of the UT from a first of the communications paths to a second of the communications paths, wherein the determination is based on an evaluation performed based at least in part on the PSM.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: December 17, 2019
    Assignee: Hughes Network Systems, LLC
    Inventors: Nassir Benammar, Deepak Arur, Channasandra Ravishankar, Yash Vasavada
  • Publication number: 20190372819
    Abstract: Disclosed methods of terrestrial station monitoring of downlink signal quality include receiving a sequence of samples of reference symbol slots of a downlink burst, and estimating a time offset between a local clock and a timing of a symbol pattern carried by the reference symbol slots, using a local copy of the reference symbol pattern. A corresponding time correction is applied to the sequence of samples to form time corrected samples of symbols carried by the reference symbol slots. A frequency offset between the time corrected samples of the symbols carried by the reference symbol slots and a local clock is estimated. A corresponding frequency compensation is applied to the time corrected samples, forming time/frequency compensated samples of the symbols carried by the reference symbol slots. A signal to noise plus interference ratio (SNIR) estimation data, and corresponding estimate of signal path, is generated, based on moments of the time/frequency compensated samples.
    Type: Application
    Filed: May 29, 2018
    Publication date: December 5, 2019
    Applicant: Hughes Network Systems, LLC
    Inventors: James Jehong Jong, Santharam Gurumani, Channasandra Ravishankar