Patents by Inventor Chanro Park

Chanro Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200321434
    Abstract: A method of fabricating a semiconductor device is described. The method includes forming a stack of sacrificial layers on a substrate. A U-shaped trench is formed in the stack of the sacrificial layers. A first U-shaped channel layer is deposited in the U-shaped trench. A first U-shaped sacrificial layer is conformally formed covering the U-shaped channel layer. A second U-shaped channel layer is conformally deposited covering the first U-shaped sacrificial layer. A gate is formed around the first and the second U-shaped channel layers.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Inventors: Kangguo Cheng, Ruilong Xie, Julien Frougier, Chanro Park, TENKO YAMASHITA
  • Publication number: 20200312843
    Abstract: An integrated circuit includes a first set of fins, a second set of fins, a gate, and a dielectric plug. The second set of fins is discrete from the first set of fins, and the gate passes over the first set of fins and the second set of fins. The dielectric plug is surrounded by the gate on two sides where the gate passes between the first set of fins and the second set of fins. Incorporation of aspects of the invention into integrated circuits with fin-based field effect transistors (FinFETs) helps to reduce parasitic capacitance between gate features and other nearby electrically conductive features.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Ruilong Xie, Juntao Li, Kangguo Cheng, Chanro Park
  • Patent number: 10790395
    Abstract: A semiconductor device is described. The semiconductor device includes a dielectric layer oriented substantially parallelly to a substrate. The semiconductor device includes a metal layer formed on top of the dielectric layer. The semiconductor device includes a fin extending substantially orthogonally from the substrate through the dielectric layer into the metal layer. The semiconductor device includes a gate insulator deposited on top of the fins and the dielectric layer. The semiconductor device includes an optical projection lithography (OPL) material deposited on a portion of a surface area of the device to form a first covered surface area and a first exposed surface area. The semiconductor device includes a first exposed gate insulator area formed by removing the metal layer under the first exposed surface area. The semiconductor device includes a first exposed fin area formed by removing the gate insulator from the first exposed gate insulator area.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: September 29, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Injo Ok, Ruilong Xie, Chanro Park, Min Gyu Sung
  • Patent number: 10788446
    Abstract: A semiconductor device includes a first passivation layer disposed on a semiconductor base. The semiconductor device further includes a dielectric layer disposed on the first passivation layer. The semiconductor device further includes a plurality of pillars disposed in an opening in the dielectric layer and the first passivation layer and from a top surface of the semiconductor base. The semiconductor device further includes a metal layer disposed on the exterior surfaces of the plurality of pillars and sidewalls of the dielectric layer and the first passivation layer and on the exposed top surface of the semiconductor base. The semiconductor device further includes a second passivation layer disposed on the metal layer and a top surface of the semiconductor device; wherein the second passivation layer has an electrical charge.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: September 29, 2020
    Assignee: International Business Machines Corporation
    Inventors: Juntao Li, Kangguo Cheng, Ruilong Xie, Chanro Park
  • Patent number: 10790376
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to contact structures and methods of manufacture. The structure includes: a plurality of gate structures comprising source and drain regions and sidewall spacers; contacts connecting to at least one gate structure of the plurality of gate structures; and at least one metallization feature connecting to the source and drain regions and extending over the sidewall spacers.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Chanro Park, Julien Frougier, Kangguo Cheng, Andre P. Labonte
  • Publication number: 20200303264
    Abstract: A method of forming a semiconductor structure includes forming a first portion of a source/drain contact over a source/drain region of a fin-type field-effect transistor (FinFET), the source/drain region being formed over a fin providing a channel region of the FinFET and being adjacent a gate spacer surrounding a gate region of the FinFET. The method also includes forming a first interlayer dielectric (ILD) layer over the first portion of the source/drain contact, the gate spacer and the gate region, and forming a second ILD layer over the first ILD layer. The method further includes forming a second portion of the source/drain contact over the first portion of the source/drain contact in a first opening in the first ILD layer, and forming a third portion of the source/drain contact over the second portion of the source/drain contact in a second opening in the second ILD layer. The second opening is larger than the first opening.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Inventors: Chanro Park, Kangguo Cheng, Ruilong Xie, Hari Prasad Amanapu
  • Publication number: 20200303543
    Abstract: Embodiments of the present invention are directed to forming a wrap-around contact (WAC) for a vertical field effect transistor (VFET). In a non-limiting embodiment of the invention, a top spacer is formed on a surface of a gate. A sacrificial spacer is formed on the top spacer. A source/drain region is formed over the top spacer and between sidewalls of the sacrificial spacer. The sacrificial spacer can be replaced with a wrap-around contact. The source/drain region can include a first material, the sacrificial spacer can include a second material, and the second material can be selected such that the second material can be etched selective to the first material.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Inventors: Kangguo Cheng, Chanro Park, Julien Frougier, RUILONG XIE
  • Publication number: 20200294866
    Abstract: A method for forming a semiconductor device includes forming a structure having at least a first nanosheet stack for a first device, a second nanosheet stack for a second device and disposed over the first nanosheet stack, a disposable gate structure, and a gate spacer. The disposable gate structure and sacrificial layers of the first and second nanosheet stacks are removed thereby forming a plurality of cavities. A conformal gate dielectric layer is formed in the plurality cavities and surrounding at least portions of the first and second nanosheet stacks. A first conformal work function layer is formed in contact with the gate dielectric layer. Portions of the first conformal work function layer are removed without using a mask from at least the second nanosheet stack. A second conformal work function layer is formed on exposed portions of the gate dielectric layer.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Inventors: Kangguo CHENG, Juntao LI, Ruilong Xie, Chanro PARK
  • Publication number: 20200292491
    Abstract: A method for fabricating a semiconductor device including an ion-sensitive field-effect transistor (ISFET) with enhanced sensitivity includes forming a sawtooth microwell within a base structure formed on a semiconductor chip corresponding to an ISFET, including using a sawtooth mask to etch through the base structure to expose the semiconductor chip, removing the sawtooth mask, and forming a sawtooth macrowell from the sawtooth microwell.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Chanro Park, Kangguo Cheng, Juntao Li, Ruilong Xie
  • Publication number: 20200295151
    Abstract: Techniques regarding non-SAC semiconductor devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can further comprise a gate positioned adjacent a channel region of a semiconductor body for a field effect transistor. The gate can comprise a metal liner, and wherein the metal liner is an interface between a first metal layer of the gate and a second metal layer of the gate.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Ruilong Xie, Hari Prasad Amanapu, Kangguo Cheng, Chanro Park
  • Publication number: 20200292490
    Abstract: A method for fabricating a semiconductor device including an ion-sensitive field-effect transistor (ISFET) with enhanced sensitivity includes forming a microwell within a stack including alternating dielectric layers formed on a semiconductor chip corresponding to an ISFET. Forming the stack includes forming a first dielectric layer including a first material and a second dielectric layer including a second material. The method further includes etching the second dielectric layer selective to at least the first dielectric layer using a wet etch process, and forming a macrowell from the microwell having a shape defined by the etching.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Kangguo Cheng, Chanro Park, Juntao Li, Ruilong Xie
  • Patent number: 10770562
    Abstract: Techniques are provided for fabricating a semiconductor integrated circuit device which implement an interlayer dielectric (ILD) layer replacement process to replace an initial sacrificial ILD layer with a low-k ILD layer, while forming silicide or dielectric capping layers to protect source/drain contacts of field-effect transistor devices from etch damage during the ILD replacement process. For example, source/drain contact openings (e.g., trenches) are formed in a sacrificial ILD layer and metallic source/drain contacts are formed in the source/drain contact openings. Protective capping layers (e.g., metal-semiconductor alloy capping layers or dielectric capping layers) are formed on upper surfaces of the metallic source/drain contacts. The sacrificial ILD layer is removed using an etch process to etch down the sacrificial ILD layer selective to the protective capping layers, and a low-k ILD layer is formed in place of the removed sacrificial ILD layer.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Andrew Greene, Vimal Kamineni, Adra Carr, Chanro Park, Ruilong Xie
  • Patent number: 10770585
    Abstract: A device including a self-aligned buried contact between spacer liners and isolated from a pull down (PD)/pull-up (PU) shared gate and an n-channel field-effect transistor (NFET) pass gate (PG) gate and method of production thereof. Embodiments include first and second high-k/metal gate (HKMG) structures over a first portion of a substrate, and a third HKMG structure over a second portion of the substrate; an inter-layer dielectric (ILD) over a portion of the substrate and on sidewalls of the first, second and third HKMG structures; a spacer liner on sidewalls of the ILD between the second and third HKMG structures; and a buried contact layer between the spacer liner and in a portion of the substrate.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: September 8, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Chanro Park, Andre Labonte, Daniel Chanemougame
  • Patent number: 10770566
    Abstract: A device is disclosed that includes an active layer, a gate structure positioned above a channel region of the active layer and a first sidewall spacer positioned adjacent the gate structure. The device also includes a gate cap layer positioned above the gate structure and an upper spacer that contacts sidewall surfaces of the gate cap layer, a portion of an upper surface of the gate structure and an inner surface of the first sidewall spacer.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 8, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Julien Frougier, Ruilong Xie, Chanro Park, Kangguo Cheng
  • Patent number: 10770454
    Abstract: We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: September 8, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chanro Park, Ruilong Xie, Kangguo Cheng, Juntao Li
  • Publication number: 20200279769
    Abstract: A method is presented for forming fully aligned vias without recessing a plurality of conductive lines. The method includes forming the plurality of conductive lines within an interlayer dielectric (ILD), growing first dielectric regions in direct contact with the plurality of conductive lines, forming a capping layer over the first dielectric regions, depositing an ultra-low-k (ULK) layer over and in direct contact with the capping layer, forming a via over a conductive line of the plurality of conductive lines, and removing an exposed portion of the capping layer and an exposed first dielectric region in direct contact with the conductive line to reveal the conductive line.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Chanro Park, Ruilong Xie, Kangguo Cheng, Juntao Li
  • Publication number: 20200279933
    Abstract: Techniques are provided for fabricating a semiconductor integrated circuit device which implement an interlayer dielectric (ILD) layer replacement process to replace an initial sacrificial ILD layer with a low-k ILD layer, while forming silicide or dielectric capping layers to protect source/drain contacts of field-effect transistor devices from etch damage during the ILD replacement process. For example, source/drain contact openings (e.g., trenches) are formed in a sacrificial ILD layer and metallic source/drain contacts are formed in the source/drain contact openings. Protective capping layers (e.g., metal-semiconductor alloy capping layers or dielectric capping layers) are formed on upper surfaces of the metallic source/drain contacts. The sacrificial ILD layer is removed using an etch process to etch down the sacrificial ILD layer selective to the protective capping layers, and a low-k ILD layer is formed in place of the removed sacrificial ILD layer.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Inventors: Kangguo Cheng, Juntao Li, Andrew Greene, Vimal Kamineni, Adra Carr, Chanro Park, Ruilong Xie
  • Publication number: 20200274000
    Abstract: Embodiments of the present invention are directed to techniques for providing an novel field effect transistor (FET) architecture that includes a center fin region and one or more vertically stacked nanosheets. In a non-limiting embodiment of the invention, a non-planar channel region is formed having a first semiconductor layer, a second semiconductor layer, and a fin-shaped bridge layer between the first semiconductor layer and the second semiconductor layer. Forming the non-planar channel region can include forming a nanosheet stack over a substrate, forming a trench by removing a portion of the nanosheet stack, and forming a third semiconductor layer in the trench. Outer surfaces of the first semiconductor layer, the second semiconductor layer, and the fin-shaped bridge region define an effective channel width of the non-planar channel region.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: RUILONG XIE, Julien Frougier, CHANRO PARK, Edward Nowak, Yi Qi, Kangguo Cheng, NICOLAS LOUBET
  • Publication number: 20200273704
    Abstract: A photolithography patterning stack and method for forming the same. The stack includes a plurality of patterned silicon oxide lines. A plurality of patterned silicon germanium lines each underlie and contact one patterned silicon oxide line of the plurality of patterned silicon oxide lines. The photolithography patterning stack further comprises a plurality of layers underlying the plurality of patterning silicon germanium lines. The method includes patterning at least a photoresist layer of a photolithographic patterning stack. The patterning exposing portions of a silicon germanium layer of the photolithographic patterning stack. A germanium oxide layer is formed in contact with the patterned photoresist layer and the portions of the silicon germanium layer. A plurality of silicon oxide layers is formed from the germanium oxide layer. Each of the silicon oxide layer is in contact with one of the portions of the silicon germanium layer.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: Chanro PARK, Ruilong Xie, Kangguo CHENG, Choonghyun LEE
  • Publication number: 20200273979
    Abstract: Embodiments of the present invention are directed to techniques for providing an novel field effect transistor (FET) architecture that includes a center fin region and one or more vertically stacked nanosheets. In a non-limiting embodiment of the invention, a nanosheet stack is formed over a substrate. The nanosheet stack can include one or more first semiconductor layers and one or more first sacrificial layers. A trench is formed by removing a portion of the one or more first semiconductor layers and the one or more first sacrificial layers. The trench exposes a surface of a bottommost sacrificial layer of the one or more first sacrificial layers. The trench can be filled with one or more second semiconductor layers and one or more second sacrificial layers such that each of the one or more second semiconductor layers is in contact with a sidewall of one of the one or more first semiconductor layers.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: RUILONG XIE, Julien Frougier, CHANRO PARK, Edward Nowak, Yi Qi, Kangguo Cheng, NICOLAS LOUBET