Patents by Inventor Chao-Kai Cheng

Chao-Kai Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081055
    Abstract: A semiconductor structure includes a substrate. The substrate is divided into a first element region, a second element region and a boundary region. The boundary region is disposed between the first element region and a second element region. A first mask structure covers the first element region. A second mask structure is disposed in the second element region. A logic gate structure is disposed within the second element region.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 7, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hsuan-Kai Wang, Chao-Sheng Cheng, Chi-Cheng Huang
  • Patent number: 11615955
    Abstract: A method for forming a material having a Perovskite single crystal structure includes alternately growing, on a substrate, each of a plurality of first layers and each of a plurality of second layers having compositions different from the plurality of first layers and forming a material having a Perovskite single crystal structure by annealing the plurality of first layers and the plurality of second layers.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: March 28, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Bo-Yu Yang, Minghwei Hong, Jueinai Kwo, Yen-Hsun Lin, Keng-Yung Lin, Hsien-Wen Wan, Chao Kai Cheng, Kuan Chieh Lu
  • Publication number: 20200388490
    Abstract: A method for forming a material having a Perovskite single crystal structure includes alternately growing, on a substrate, each of a plurality of first layers and each of a plurality of second layers having compositions different from the plurality of first layers and forming a material having a Perovskite single crystal structure by annealing the plurality of first layers and the plurality of second layers.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Bo-Yu YANG, Minghwei HONG, Jueinai KWO, Yen-Hsun LIN, Keng-Yung LIN, Hsien-Wen WAN, Chao Kai CHENG, Kuan Chieh LU
  • Patent number: 10755924
    Abstract: A method for forming a material having a Perovskite single crystal structure includes alternately growing, on a substrate, each of a plurality of first layers and each of a plurality of second layers having compositions different from the plurality of first layers and forming a material having a Perovskite single crystal structure by annealing the plurality of first layers and the plurality of second layers.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: August 25, 2020
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Bo-Yu Yang, Minghwei Hong, Jueinai Kwo, Yen-Hsun Lin, Keng-Yung Lin, Hsien-Wen Wan, Chao Kai Cheng, Kuan Chieh Lu
  • Patent number: 10466083
    Abstract: A safety design method for an electromagnetic flowmeter is provided. The method includes following steps: providing an electromagnetic flowmeter including a measuring pipeline allowing a working fluid to flow through therein and a power supply module; defining a first explosion-proof hazardous area for containing the power supply module in the electromagnetic flowmeter; defining a second explosion-proof hazardous area for containing the measuring pipeline in the electromagnetic flowmeter; and separating the first explosion-proof hazardous area from the second explosion-proof hazardous area.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: November 5, 2019
    Assignee: FINETEK CO., LTD.
    Inventors: Chien-Lung Huang, Chun-Ju Chen, Chao-Kai Cheng
  • Publication number: 20190283978
    Abstract: An online material moisture measurement system is provided. The online material moisture measurement system includes a fixed conveyor unit, a sensor and a constant-volume material guiding device. The fixed conveyor unit has a conveying side provided for passing a material. The sensor is installed onto the conveying side. A flow channel is formed between the constant-volume material guiding device and the fixed conveyor unit and has a material inlet and a material outlet. When the material enters into the material inlet and passes through the material outlet, the material has a volume greater than a lower limit and moves and passes through the sensor steadily. The material measured in a unit time can be situated at a stable state to improve the measurement precision.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 19, 2019
    Inventors: Liang-Chi CHANG, Chien-Lung HUANG, Chao-Kai CHENG
  • Publication number: 20190154477
    Abstract: A safety design method for an electromagnetic flowmeter is provided. The method includes following steps: providing an electromagnetic flowmeter including a measuring pipeline allowing a working fluid to flow through therein and a power supply module; defining a first explosion-proof hazardous area for containing the power supply module in the electromagnetic flowmeter; defining a second explosion-proof hazardous area for containing the measuring pipeline in the electromagnetic flowmeter; and separating the first explosion-proof hazardous area from the second explosion-proof hazardous area.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Chien-Lung HUANG, Chun-Ju CHEN, Chao-Kai CHENG
  • Patent number: 10228274
    Abstract: A liquid level sensing apparatus (10) for long-distance automatically enhancing a signal-to-noise ratio is applied to a measured target (20). The liquid level sensing apparatus (10) includes a sensing module (102), a long-distance command receiving module (104) and at least a brake module (106). The sensing module (102) transmits a sensing signal (108) to the measured target (20). The sensing signal (108) touches the measured target (20) to reflect back a reflected signal (110). The sensing module (102) receives the reflected signal (110) to measure the signal-to-noise ratio and to measure a height of the measured target (20). The long-distance command receiving module (104) is electrically connected to the sensing module (102). The long-distance command receiving module (104) receives a long-distance command signal (302). The brake module (106) is mechanically connected to the sensing module (102).
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 12, 2019
    Assignee: FINETEK CO., LTD.
    Inventors: I-Chu Lin, Yao-Chen Yu, Chao-Kai Cheng, Yi-Liang Hou
  • Patent number: 9976893
    Abstract: A method for measuring a permittivity (?) of a material (30) includes following steps. A sensing rod (14) of a material level sensor (10) inserts into a tank (20). The material level sensor (10) proceeds with a material level measurement of the material (30) to obtain a first feature value. The material level sensor (10) is vertically moved with a vertical distance (Hair). The material level sensor (10) proceeds with the material level measurement to obtain a second feature value, and subtracts the first feature value by the second feature value to obtain a feature value variation, and calculates the feature value variation to obtain the permittivity (?) of the material (30).
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: May 22, 2018
    Assignee: FINETEK CO., LTD.
    Inventors: Shyh-Jong Chung, I-Chu Lin, Liang-Chi Chang, Chao-Kai Cheng, Yi-Liang Hou
  • Publication number: 20180106886
    Abstract: A radar level transmitter (1, 1a) includes a detection body (10, 10a), an antenna body (20, 20a) and a film sheet (30, 30a). The detection body (10, 10a) has a circuit board (12) being capable of emitting signals of detection and receiving reflected signals. One end of the antenna body (20, 20a) connects with the detection body (10, 10a). The film sheet (30, 30a) is combined with the antenna body (20, 20a) and covers another end of the antenna body (20, 20a); an airflow passes through the film sheet (30, 30a) for being capable of removing dusts adhered to the film sheet (30, 30a). Therefore, a radar level transmitter (1, 1a) with dust removing structures is achieved and a regular cleaning by personnel is not necessary.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 19, 2018
    Inventors: I-Chu LIN, Yao-Chen YU, Chao-Kai CHENG, Yi-Liang HOU
  • Publication number: 20180073909
    Abstract: A liquid level sensing apparatus (10) for long-distance automatically enhancing a signal-to-noise ratio is applied to a measured target (20). The liquid level sensing apparatus (10) includes a sensing module (102), a long-distance command receiving module (104) and at least a brake module (106). The sensing module (102) transmits a sensing signal (108) to the measured target (20). The sensing signal (108) touches the measured target (20) to reflect back a reflected signal (110). The sensing module (102) receives the reflected signal (110) to measure the signal-to-noise ratio and to measure a height of the measured target (20). The long-distance command receiving module (104) is electrically connected to the sensing module (102). The long-distance command receiving module (104) receives a long-distance command signal (302). The brake module (106) is mechanically connected to the sensing module (102).
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventors: I-Chu LIN, Yao-Chen YU, Chao-Kai CHENG, Yi-Liang HOU
  • Patent number: 9851324
    Abstract: A sensing apparatus includes a probe and a sensing module. The sensing module includes a material sensing circuit, an operation unit and a signal output circuit. The sensing module generates a frequency sweep signal and sends the frequency sweep signal to the probe to sense a status of a material. The frequency sweep signal is a plurality of signals having different frequencies from each other in a predetermined frequency range. When the frequency sweep signal touches the material, an equivalent capacitance of the material is utilized to generate a reflected signal. The material sensing circuit receives the reflected signal and sends the reflected signal to the operation unit. The operation unit operates the reflected signal to generate a waveform signal to determine the status of the material. The operation unit utilizes an impedance spectrum to determine the status of the material.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 26, 2017
    Assignee: Finetek Co., Ltd.
    Inventors: Yin-Lun Huang, I-Chu Lin, Chao-Kai Cheng, Yi-Liang Hou
  • Publication number: 20170352539
    Abstract: A method for forming a material having a Perovskite single crystal structure includes alternately growing, on a substrate, each of a plurality of first layers and each of a plurality of second layers having compositions different from the plurality of first layers and forming a material having a Perovskite single crystal structure by annealing the plurality of first layers and the plurality of second layers.
    Type: Application
    Filed: April 14, 2017
    Publication date: December 7, 2017
    Inventors: Bo-Yu YANG, Minghwei HONG, Jueinai KWO, Yen-Hsun LIN, Keng-Yung LIN, Hsien-Wen WAN, Chao Kai CHENG, Kuan Chieh LU
  • Patent number: 9823110
    Abstract: A radar liquid level measuring apparatus (10) includes a first oscillation module (102), a second oscillation module (104), a frequency comparator (106) and a control module (107). The first oscillation module (102) has a first oscillation frequency. The first oscillation module (102) generates a first pulse signal (10202). The second oscillation module (104) has a second oscillation frequency. The second oscillation module (104) generates a second pulse signal (10402). The frequency comparator (106) converts the first pulse signal (10202) and the second pulse signal (10402) into an adjusted signal (10602). The control module (107) compares the adjusted signal (10602) with an expectation value (10818) to obtain a comparative result signal. According to the comparative result signal, the control module (107) adjusts the second oscillation frequency, so that the second oscillation frequency and the first oscillation frequency have a constant frequency difference.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: November 21, 2017
    Assignee: FINETEK CO., LTD.
    Inventors: I-Chu Lin, Liang-Chi Chang, Cheng-Huang Wu, Chao-Kai Cheng, Yi-Liang Hou
  • Patent number: 9797763
    Abstract: A measurement device for detecting a material level and a temperature has a cable, a level sensing module, a thermal sensing module, a processing module, and a power module. The measurement device detects difference of currents between an electrode of the cable and the earth, and calculates a material level of a material stored in a silo according to the RF admittance. The cable comprises a plurality of thermal sensing units for detecting a temperature of the material. The measurement device further calibrates a material capacitance of the material with the temperature for avoiding an error caused by an inaccurate parameter.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: October 24, 2017
    Assignee: Finetek Co., Ltd.
    Inventors: Liang-Chi Chang, Teng-Chin Yu, Kai-Di Yang, Ting-Kuo Wu, Chao-Kai Cheng
  • Publication number: 20170219332
    Abstract: A time domain reflectometry waveguide structure (1) includes: a control module (10) for transmitting a sensing signal and receiving a reflection signal fed back from the sensing signal; a waveguide sensor (20) connected to the control module (10) and including a first probe (21) connected to the control module (10), a curved probe (22) connected to the first probe (21) and a second probe (23) extended from the curved probe (22); a protective cover (30) coaxially sheathed on the first probe (21) and exposing the curved probe (22), and a sensing signal passing through the protective cover (30) and the first probe (21) without interference and transmitted to the curved probe (22) and the second probe (23) to obtain the reflection signal; and an insulator (40) covered onto the waveguide sensor (20) and the protective cover (30) to prevent interference, facilitate measurements, and measure environmental parameters of different media.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 3, 2017
    Inventors: I-Chu LIN, Liang-Chi CHANG, Chao-Kai CHENG, Yao-Chen YU, Yi-Liang HOU
  • Patent number: 9638570
    Abstract: A calibration method for a capacitance level sensing apparatus (10) is applied for a tank measurement. A measurement signal generating circuit (102) generates a measurement signal (104) to proceed with the tank measurement. According to a measurement result measured through the measurement signal (104), a sensing circuit (108) transmits a sensing signal (110) to a control unit (112). According to the sensing signal (110), the control unit (112) determines whether the sensing signal (110) is in an effective range or not. If the sensing signal (110) is in the effective range, the control unit (112) sets a total capacitance in accordance with the sensing signal (110) as a measurement base value. If the sensing signal (110) is not in the effective range, the control unit (112) controls the measurement signal generating circuit (102) to adjust a measurement frequency of the measurement signal (104).
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 2, 2017
    Assignee: FINETEK CO., LTD.
    Inventors: Yin-Lun Huang, Chao-Kai Cheng, Chi-Fan Liao, Yi-Liang Hou
  • Publication number: 20170074711
    Abstract: A method for measuring a permittivity (?) of a material (30) includes following steps. A sensing rod (14) of a material level sensor (10) inserts into a tank (20). The material level sensor (10) proceeds with a material level measurement of the material (30) to obtain a first feature value. The material level sensor (10) is vertically moved with a vertical distance (Hair). The material level sensor (10) proceeds with the material level measurement to obtain a second feature value, and subtracts the first feature value by the second feature value to obtain a feature value variation, and calculates the feature value variation to obtain the permittivity (?) of the material (30).
    Type: Application
    Filed: September 16, 2015
    Publication date: March 16, 2017
    Inventors: Shyh-Jong CHUNG, I-Chu LIN, Liang-Chi CHANG, Chao-Kai CHENG, Yi-Liang HOU
  • Patent number: 9568373
    Abstract: A cable-base sensor can detect a material level and temperatures of a material stored in a silo. The cable-base sensor comprises an electronic box, a cable, a stopper, and a signal processing module. The electronic box comprises a base and a space for containing the signal processing module, and a hole is formed through a bottom of the electronic box. The base is mounted in the bottom, and a tapered hole is formed through the base. A first end of the cable extents into the tapered hole and the hole, and spreads to form a cable bud. The stopper is a tapered block and pressed into the tapered hole for enforcing the cable bud to be sandwiched between the stopper and the base. The cable bud strengthens a connection between the electronic box and the cable for preventing damages from solid materials.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 14, 2017
    Assignee: Finetek Co., Ltd.
    Inventors: Chien-Lung Huang, Sheng-Shou Chen, Tzu-Chuan Tsai, Yao-Chen Yu, Chao-Kai Cheng, Ting-Kuo Wu
  • Publication number: 20170038242
    Abstract: A calibration method for a capacitance level sensing apparatus (10) is applied for a tank measurement. A measurement signal generating circuit (102) generates a measurement signal (104) to proceed with the tank measurement. According to a measurement result measured through the measurement signal (104), a sensing circuit (108) transmits a sensing signal (110) to a control unit (112). According to the sensing signal (110), the control unit (112) determines whether the sensing signal (110) is in an effective range or not. If the sensing signal (110) is in the effective range, the control unit (112) sets a total capacitance in accordance with the sensing signal (110) as a measurement base value. If the sensing signal (110) is not in the effective range, the control unit (112) controls the measurement signal generating circuit (102) to adjust a measurement frequency of the measurement signal (104).
    Type: Application
    Filed: August 7, 2015
    Publication date: February 9, 2017
    Inventors: Yin-Lun HUANG, Chao-Kai CHENG, Chi-Fan LIAO, Yi-Liang HOU