Patents by Inventor Chao-Kun Hu

Chao-Kun Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050158985
    Abstract: An integrated circuit structure is disclosed that has a layer of logical and functional devices and an interconnection layer above the layer of logical and functional devices. The interconnection layer has a substrate, conductive features within the substrate and caps positioned only above the conductive features.
    Type: Application
    Filed: February 16, 2005
    Publication date: July 21, 2005
    Inventors: Shyng-Tsong Chen, Timothy Dalton, Kenneth Davis, Chao-Kun Hu, Fen Jamin, Steffen Kaldor, Mahadevaiyer Krishnan, Kaushik Kumar, Michael Lofaro, Sandra Malhotra, Chandrasekhar Narayan, David Rath, Judith Rubino, Katherine Saenger, Andrew Simon, Sean Smith, Wei-tsu Tseng
  • Publication number: 20040229456
    Abstract: A process is described for the fabrication of submicron interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of CU electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
    Type: Application
    Filed: February 9, 2004
    Publication date: November 18, 2004
    Applicant: International Business Machines
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, John Owen Dukovic, Daniel Charles Edelstein, Wilma Jean Horkans, Chao-Kun Hu, Jeffrey Louis Hurd, Kenneth Parker Rodbell, Cyprian Emeka Uzoh, Kwong-Hon Wong
  • Publication number: 20040113279
    Abstract: An integrated circuit structure is disclosed that has a layer of logical and functional devices and an interconnection layer above the layer of logical and functional devices. The interconnection layer has a substrate, conductive features within the substrate and caps positioned only above the conductive features.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Applicant: International Business Machines Corporation
    Inventors: Shyng-Tsong Chen, Timothy J. Dalton, Kenneth M. Davis, Chao-Kun Hu, Fen F. Jamin, Steffen K. Kaldor, Mahadevaiyer Krishnan, Kaushik Kumar, Michael F. Lofaro, Sandra G. Malhotra, Chandrasekhar Narayan, David L. Rath, Judith M. Rubino, Katherine L. Saenger, Andrew H. Simon, Sean P.E. Smith, Wei-tsu Tseng
  • Patent number: 6709562
    Abstract: A process is described for the fabrication of submicron interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of Cu electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: March 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, John Owen Dukovic, Daniel Charles Edelstein, Wilma Jean Horkans, Chao-Kun Hu, Jeffrey Louis Hurd, Kenneth Parker Rodbell, Cyprian Emeka Uzoh, Kwong-Hon Wong
  • Patent number: 6573606
    Abstract: In the invention an electrically isolated copper interconnect structural interface is provided involving a single, about 50-300 A thick, alloy capping layer, that controls diffusion and electromigration of the interconnection components and reduces the overall effective dielectric constant of the interconnect; the capping layer being surrounded by a material referred to in the art as hard mask material that can provide a resist for subsequent reactive ion etching operations, and there is also provided the interdependent process steps involving electroless deposition in the fabrication of the structural interface. The single layer alloy metal barrier in the invention is an alloy of the general type A—X—Y, where A is a metal taken from the group of cobalt (Co) and nickel (Ni), X is a member taken from the group of tungsten (W), tin (Sn), and silicon (Si), and Y is a member taken from the group of phosphorous (P) and boron (B); having a thickness in the range of 50 to 300 Angstroms.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: June 3, 2003
    Assignee: International Business Machines Corporation
    Inventors: Carlos Juan Sambucetti, Xiaomeng Chen, Soon-Cheon Seo, Birenda Nath Agarwala, Chao-Kun Hu, Naftali Eliahu Lustig, Stephen Edward Greco
  • Patent number: 6503641
    Abstract: An electrical conductor for use in an electronic structure is disclosed which includes a conductor body that is formed of an alloy including between about 0.001 atomic % and about 2 atomic % of an element selected from the group consisting of Ti, Zr, In, Sn and Hf; and a liner abutting the conductor body which is formed of an alloy that includes Ta, W, Ti, Nb and V. The invention further discloses a liner for use in a semiconductor interconnect that is formed of a material selected from the group consisting of Ti, Hf, In, Sn, Zr and alloys thereof, TiCu3, Ta1−XTix, Ta1−X, Hfx, Ta1−X, Inxy, Ta1−XSnx, Ta1−XZrx.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: January 7, 2003
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Chao-Kun Hu, Kim Yang Lee, Ismail Cevdet Noyan, Robert Rosenberg, Thomas McCarroll Shaw
  • Publication number: 20030001275
    Abstract: In the invention an electrically isolated copper interconnect structural interface is provided involving a single, about 50-300 A thick, alloy capping layer, that controls diffusion and electromigration of the interconnection components and reduces the overall effective dielectric constant of the interconnect; the capping layer being surrounded by a material referred to in the art as hard mask material that can provide a resist for subsequent reactive ion etching operations, and there is also provided the interdependent process steps involving electroless deposition in the fabrication of the structural interface. The single layer alloy metal barrier in the invention is an alloy of the general type A-X-Y, where A is a metal taken from the group of cobalt (Co) and nickel (Ni), X is a member taken from the group of tungsten (W), tin (Sn), and silicon (Si), and Y is a member taken from the group of phosphorous (P) and boron (B); having a thickness in the range of 50 to 300 Angstroms.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 2, 2003
    Inventors: Carlos Juan Sambucetti, Xiaomeng Chen, Soon-Cheon Seo, Birendra Nath Agarwala, Chao-Kun Hu, Naftali Eliahu Lustig, Stephen Edward Greco
  • Patent number: 6448173
    Abstract: A dual damascene process capable of reliably producing aluminum interconnects that exhibit improved electromigration characteristics over aluminum interconnects produced by conventional RIE techniques. In particular, the dual damascene process relies on a PVD-Ti/CVD-TiN barrier layer to produce aluminum lines that exhibit significantly reduced saturation resistance levels and/or suppressed electromigration, particularly in lines longer than 100 micrometers. The electromigration lifetime of the dual damascene aluminum line is strongly dependent on the materials and material fill process conditions. Significantly, deviations in materials and processing can result in electromigration lifetimes inferior to that achieved with aluminum RIE interconnects. In one example, current densities as high as 2.5 MA/cm2 are necessary to induce a statistically relevant number of fails due to electromigration.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: September 10, 2002
    Assignee: International Business Machines Corporation
    Inventors: Lawrence Alfred Clevenger, Ronald Gene Filippi, Kenneth Parker Rodbell, Roy Charles Iggulden, Chao-Kun Hu, Lynne Marie Gignac, Stefan Weber, Jeffrey Peter Gambino, Rainer Florian Schnabel
  • Publication number: 20020098681
    Abstract: The idea of the invention is to coat the free surface of patterned Cu conducting lines in on-chip interconnections (BEOL) wiring by a 1-20 nm thick metal layer prior to deposition of the interlevel dielectric. This coating is sufficiently thin so as to obviate the need for additional planarization by polishing, while providing protection against oxidation and surface, or interface, diffusion of Cu which has been identified by the inventors as the leading contributor to metal line failure by electromigration and thermal stress voiding. Also, the metal layer increases the adhesion strength between the Cu and dielectric so as to further increase lifetime and facilitate process yield. The free surface is a direct result of the CMP (chemical mechanical polishing) in a damascene process or in a dry etching process by which Cu wiring is patterned. It is proposed that the metal capping layer be deposited by a selective process onto the Cu to minimize further processing.
    Type: Application
    Filed: November 13, 2001
    Publication date: July 25, 2002
    Inventors: Chao-Kun Hu, Robert Rosenberg, Judith Marie Rubino, Carlos Juan Sambucetti, Anthony Kendall Stamper
  • Publication number: 20020076574
    Abstract: An electrical conductor for use in an electronic structure is disclosed which includes a conductor body that is formed of an alloy including between about 0.001 atomic % and about 2 atomic % of an element selected from the group consisting of Ti, Zr, In, Sn and Hf; and a liner abutting the conductor body which is formed of an alloy that includes Ta, W, Ti, Nb and V. The invention further discloses a liner for use in a semiconductor interconnect that is formed of a material selected from the group consisting of Ti, Hf, In, Sn, Zr and alloys thereof, TiCu3, Ta1−XTix, Ta1−XHfx, Ta1−XInxy, Ta1−XSnx, Ta1−XZrx.
    Type: Application
    Filed: December 18, 2000
    Publication date: June 20, 2002
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Roy Arthur Carruthers, James McKell Edwin Harper, Chao-Kun Hu, Kim Yang Lee, Ismail Cevdet Noyan, Robert Rosenberg, Thomas McCarroll Shaw
  • Patent number: 6399496
    Abstract: The present invention discloses an interconnection structure for providing electrical communication with an electronic device which includes a body that is formed substantially of copper and a seed layer of either a copper alloy or a metal that does not contain copper sandwiched between the copper conductor body and the electronic device for improving the electromigration resistance, the adhesion property and other surface properties of the interconnection structure. The present invention also discloses methods for forming an interconnection structure for providing electrical connections to an electronic device by first depositing a seed layer of copper alloy or other metal that does not contain copper on an electronic device, and then forming a copper conductor body on the seed layer intimately bonding to the layer such that electromigration resistance, adhesion and other surface properties of the interconnection structure are improved.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: June 4, 2002
    Assignee: International Business Machines Corporation
    Inventors: Daniel Charles Edelstein, James McKell Edwin Harper, Chao-Kun Hu, Andrew H. Simon, Cyprian Emeka Uzoh
  • Patent number: 6380075
    Abstract: A method for forming an open-bottom liner for a conductor in an electronic structure and devices formed are disclosed. In the method, a pre-processed electronic substrate that has a dielectric layer on top is first provided. Via openings are then formed in a dielectric layer to expose an underlying conductive layer. The electronic substrate is then positioned in a cold-wall, low pressure chemical vapor deposition chamber, while the substrate is heated to a temperature of at least 350° C. A precursor gas is then flowed into the CVD chamber to a partial pressure of not higher than 10 mTorr, and metal is deposited from the precursor gas onto sidewalls of the via openings while bottoms of the via openings are substantially uncovered by the metal. The present invention method may be further enhanced by, optionally, modifications of a I-PVD technique or a seed layer deposition technique.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 30, 2002
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chao-Kun Hu, Sandra Guy Malhotra, Fenton Read McFeely, Stephen Mark Rossnagel, Andrew Herbert Simon
  • Patent number: 6342733
    Abstract: The idea of the invention is to coat the free surface of patterned Cu conducting lines in on-chip interconnections (BEOL) wiring by a 1-20 nm thick metal layer prior to deposition of the interlevel dielectric. This coating is sufficiently thin so as to obviate the need for additional planarization by polishing, while providing protection against oxidation and surface, or interface, diffusion of Cu which has been identified by the inventors as the leading contributor to metal line failure by electromigration and thermal stress voiding. Also, the metal layer increases the adhesion strength between the Cu and dielectric so as to further increase lifetime and facilitate process yield. The free surface is a direct result of the CMP (chemical mechanical polishing) in a damascene process or in a dry etching process by which Cu wiring is patterned. It is proposed that the metal capping layer be deposited by a selective process onto the Cu to minimize further processing.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: January 29, 2002
    Assignee: International Business Machines Corporation
    Inventors: Chao-Kun Hu, Robert Rosenberg, Judith Marie Rubino, Carlos Juan Sambucetti, Anthony Kendall Stamper
  • Patent number: 6181012
    Abstract: The present invention discloses an interconnection structure for providing electrical communication with an electronic device which includes a body that is formed substantially of copper and a seed layer of either a copper alloy or a metal that does not contain copper sandwiched between the copper conductor body and the electronic device for improving the electromigration resistance, the adhesion property and other surface properties of the interconnection structure. The present invention also discloses, methods for forming an interconnection structure for providing electrical connections to an electronic device by first depositing a seed layer of copper alloy or other metal that does not contain copper on an electronic device, and then forming a copper conductor body on the seed layer intimately bonding to the layer such that electromigration resistance, adhesion and other surface properties of the interconnection structure are improved.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: January 30, 2001
    Assignee: International Business Machines Corporation
    Inventors: Daniel Charles Edelstein, James McKell Edwin Harper, Chao-Kun Hu, Andrew H. Simon, Cyprian Emeka Uzoh
  • Patent number: 6090710
    Abstract: A method of making Copper alloys containing between 0.01 and 10 weight percent of at least one alloying element selected from carbon, indium and tin is disclosed for improved electromigration resistance, low resistivity and good corrosion resistance that can be used in chip and package interconnections and conductors by first forming the copper alloy and then annealing it to cause the diffusion of the alloying element toward the grain boundaries between the grains in the alloy are disclosed.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: July 18, 2000
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, James McKell Edwin Harper, Chao-Kun Hu, Dale Jonathan Pearson, Scott Kevin Reynolds, King-Ning Tu, Cyprian Emeka Uzoh
  • Patent number: 6063506
    Abstract: Copper alloys containing between 0.01 and 10 weight percent of at least one alloying element selected from carbon, indium and tin for improved electromigration resistance, low resistivity and good corrosion resistance that can be used in chip and package interconnections and a method of making such interconnections and conductors by first forming the copper alloy and then annealing it to cause the diffusion of the alloying element toward the grain boundaries between the grains in the alloy are disclosed.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: May 16, 2000
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, James McKell Edwin Harper, Chao-Kun Hu, Dale Jonathan Pearson, Scott Kevin Reynolds, King-Ning Tu, Cyprian Emeka Uzoh
  • Patent number: 5055158
    Abstract: A method for fabricating Josephson integrated circuits and the circuit is described incorporating the steps of depositing layers of different materials to form a trilayer Josephson junction, etching to define a plurality of trilayer areas, depositing dielectric material thereover, and chemical-mechanical polishing to planarize the dielectric material down to provide a coplanar surface with the tops of the trilayer areas for subsequent interconnection. The invention overcomes the problem of poor quality Josephson junctions, low Vm's, and crevices or gaps in the upper coplanar surface between the trilayer area and the surrounding dielectric material.
    Type: Grant
    Filed: April 4, 1991
    Date of Patent: October 8, 1991
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Chao-Kun Hu, Mark A. Jaso, Mark B. Ketchen, Alan W. Kleinsasser, Dale J. Pearson