Patents by Inventor Chao-Wei Hwang

Chao-Wei Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7494482
    Abstract: Methods and devices for transmitting micromechanical forces locally to induce surface convolutions into tissues on the millimeter to micron scale for promoting wound healing are presented. These convolutions induce a moderate stretching of individual cells, stimulating cellular proliferation and elaboration of natural growth factors without increasing the size of the wound. Micromechanical forces can be applied directly to tissue, through biomolecules or the extracellular matrix. This invention can be used with biosensors, biodegradable materials and drug delivery systems. This invention will also be useful in pre-conditioned tissue-engineering constructs in vitro. Application of this invention will shorten healing times for wounds and reduce the need for invasive surgery.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: February 24, 2009
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Dennis P. Orgill, Quentin Gavin Eichbaum, Sui Huang, Chao-Wei Hwang, Donald E. Ingber, Vishal Saxena, Evan Stuart Garfein
  • Publication number: 20030108587
    Abstract: Methods and devices for transmitting micromechanical forces locally to induce surface convolutions into tissues on the millimeter to micron scale for promoting wound healing are presented. These convolutions induce a moderate stretching of individual cells, stimulating cellular proliferation and elaboration of natural growth factors without increasing the size of the wound. Micromechanical forces can be applied directly to tissue, through biomolecules or the extracellular matrix. This invention can be used with biosensors, biodegradable materials and drug delivery systems. This invention will also be useful in pre-conditioned tissue-engineering constructs in vitro. Application of this invention will shorten healing times for wounds and reduce the need for invasive surgery.
    Type: Application
    Filed: May 15, 2002
    Publication date: June 12, 2003
    Inventors: Dennis P. Orgill, Quentin Gavin Eichbaum, Sui Huang, Chao-Wei Hwang, Donald E. Ingber, Vishal Saxena, Evan Stuart Garfein