Patents by Inventor Charles Burton

Charles Burton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10990104
    Abstract: A sensor calibration system includes a plurality of sensors and a user interface configured to receive user-provided locations of at least two sensors of the plurality of sensors. The sensor calibration system further includes a motorized apparatus including a drive system, at least one detector, and a localization system. The sensor calibration system further includes a controller communicatively coupled to the user interface and the motorized apparatus. The controller is configured to determine a whether each of at least two sensors is a key sensor based on the user-provided locations. The controller is configured to determine a path for the motorized apparatus based on the user-provided locations. The controller is further configured to determine a position of each sensor based on the location of the motorized apparatus when each sensor is detected by the at least one detector.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: April 27, 2021
    Assignee: General Electric Company
    Inventors: Huan Tan, Todd William Danko, Brandon Stephen Good, Charles Burton Theurer
  • Patent number: 10976408
    Abstract: At least some embodiments of the present invention are directed to RFID reader systems configured to estimate a directional bearing of an RFID tag. In an embodiment, the present invention is an RFID system configured in a way that upon a detection of a variance in the direction of a maximum RSSI value for a given RFID tag in response to a plurality of interrogation signals transmitted by an RFID reader over a respective plurality of different directions, the RFID reader retransmits the plurality of interrogation signals over the respective plurality of different directions with successively lower power levels until the only response(s) being received no longer exhibit the previously detected variance.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 13, 2021
    Assignee: Zebra Technologies Corporation
    Inventors: Michael J. Koch, Benjamin J. Bekritsky, Charles Burton Swope
  • Patent number: 10927818
    Abstract: A system and method for inspecting, repairing and upgrading wind turbine rotor blades of a wind turbine. The system including deploying one or more cables via an unmanned aerial vehicle (UAV), a balloon, a ballistic mechanism or a catapult to position the one or more cables in draping engagement with a portion of the wind turbine. A climbing robot is positioned to ascend the one or more cables and perform a task related to inspecting for indications, repair of indications or upgrading the rotor blade. A slave robot system, disposed at the base location and anchored to the one or more cables, provides modulation of the cables for positioning of the climbing robot relative to the wind turbine as it ascends and descends the one or more cables. After completion of the task, the climbing robot descends the one or more cables and the cables are removed from the wind turbine.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 23, 2021
    Assignee: General Electric Company
    Inventors: Shiraj Sen, Todd William Danko, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Patent number: 10930001
    Abstract: A data capture system for object dimensioning includes: a motion sensor configured to generate a detection signal responsive to detecting an object at a capture position within a capture volume; a capture controller connected to the motion sensor and configured, responsive to receiving the detection signal, to generate and transmit a shutter command substantially simultaneously to each of a plurality of cameras that causes each camera to capture a respective image of a synchronous set of images of the capture volume; an image processing server connected to each of the plurality of cameras and configured to receive the synchronous set of images from the cameras, and to store the synchronous set of images in a common repository; the image processing server further configured to generate a point cloud representing the object based on the synchronous set of images, for use in determining dimensions of the object.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: February 23, 2021
    Assignee: Zebra Technologies Corporation
    Inventors: Charles Burton Swope, Miguel X. Gines, Stanko Jelavic
  • Patent number: 10884232
    Abstract: An insertion apparatus includes an insertion end positionable within a cavity and configured to travel through the cavity, a steering end opposite the insertion end, and a body extending from the insertion end to the steering end and sized to fit within the cavity. The body includes a plurality of members flexibly coupled together and individually actuated. Each member of the plurality of members includes at least one actuator strand. At least one member of the plurality of members has a first configuration in which the at least one member of the plurality of members has a first stiffness and a second configuration in which the at least one member of the plurality of members has a second stiffness greater than the first stiffness. At least a portion of the body is flexible to facilitate travel of the body through the cavity when the at least one member of the plurality of members is in the first configuration.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: January 5, 2021
    Assignee: General Electric Company
    Inventors: Deepak Trivedi, Charles Burton Theurer, Anil Raj Duggal, Hongyi Zhou, Radislav Alexandrovich Potyrailo, Yizhen Lin
  • Patent number: 10817682
    Abstract: An antenna assembly for a radio frequency identification (RFID) reader includes: a support member having an inner surface and an opposing outer surface; a first bifilar helical antenna element wound about a first helical axis extending from the outer surface of the support member, wherein the first helical axis is exclusive to the first helical antenna element; a first control terminal on the support member, electrically connected with the first bifilar helical antenna element; a second bifilar helical antenna element wound about a second helical axis extending from the outer surface of the support member, wherein the second helical axis is exclusive to the second helical antenna element; and a second control terminal on the support member, electrically connected with the second bifilar helical antenna element.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: October 27, 2020
    Assignee: Zebra Technologies Corporation
    Inventor: Charles Burton Swope
  • Publication number: 20200284869
    Abstract: A radio frequency (RF) identification (RFID) reader calibration system for use with a venue includes an RFID reader having a primary identifier and a plurality of secondary identifiers. The primary identifier and each of the plurality of secondary identifiers having a respective unobstructed line of sight to a point on the floor of the venue. The RFID reader calibration system also includes a data capture device configured to be aimed at the primary identifier and the plurality of secondary identifiers and to capture respective coordinates of the primary identifier and each of the plurality of secondary identifiers. The RFID reader calibration system also includes a controller configured to determine: a location of the RFID reader based on the coordinates of the primary identifier; and an orientation of the RFID reader based on the respective coordinates of the primary identifier and each of the plurality of secondary identifiers.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 10, 2020
    Inventors: Yuly Mitelman, Michael J. Koch, Charles Burton Swope
  • Patent number: 10762310
    Abstract: At least some embodiments of the present invention are directed to RFID reader systems, readers, and/or arrangements configured to estimate a directional bearing of an RFID tag. In an embodiment, the present invention is an RFID arrangement configured communicate with an RFID tag via a primary transmit and receive signals and to contemporaneously determine a plurality of RSSI levels of the RFID tag over a 360-degree azimuth range via a plurality of secondary receive signals.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 1, 2020
    Assignee: Zebra Technologies Corporation
    Inventors: Benjamin J. Bekritsky, Michael J. Koch, Charles Burton Swope
  • Patent number: 10761526
    Abstract: An asset inspection system includes a robot and a server. The server receives a request for data from the robot, wherein the requested data comprises an algorithm, locates the requested data in a database stored on the server, encrypts the requested data, and transmits the requested data to the robot. The robot is configured to collect inspection data corresponding to an asset based at least in part on the requested data and transmit the collected inspection data to the server.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 1, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, Li Zhang, Romano Patrick, Viktor Holovashchenko, Charles Burton Theurer, John Michael Lizzi, Jr.
  • Publication number: 20200228928
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to facilitate proximity detection and location tracking. An example method includes receiving messages collected by a badge in an environment, the messages including signal strength and a timestamp. The example method also includes assigning a location in the environment to the badge based on a first subset of the messages. The example method also includes identifying an asset in a second subset of the messages. The example method also includes updating a current location associated with the asset based on a relative proximity of the asset to the badge, wherein the current location corresponds to a first time and the updated location corresponds to a second time, and wherein a change in location between the current location and the updated location indicates movement of the asset in the environment.
    Type: Application
    Filed: January 20, 2020
    Publication date: July 16, 2020
    Inventors: Brandon Stephen Good, Charles Burton Theurer, Shaopeng Liu, Robert Lee Wallace
  • Publication number: 20200225674
    Abstract: A sensor calibration system includes a plurality of sensors and a user interface configured to receive user-provided locations of at least two sensors of the plurality of sensors. The sensor calibration system further includes a motorized apparatus including a drive system, at least one detector, and a localization system. The sensor calibration system further includes a controller communicatively coupled to the user interface and the motorized apparatus. The controller is configured to determine a whether each of at least two sensors is a key sensor based on the user-provided locations. The controller is configured to determine a path for the motorized apparatus based on the user-provided locations. The controller is further configured to determine a position of each sensor based on the location of the motorized apparatus when each sensor is detected by the at least one detector.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 16, 2020
    Inventors: Huan Tan, Todd William Danko, Brandon Stephen Good, Charles Burton Theurer
  • Publication number: 20200210656
    Abstract: At least some embodiments of the present invention are directed to RFID reader systems, readers, and/or arrangements configured to estimate a directional bearing of an RFID tag. In an embodiment, the present invention is an RFID arrangement configured communicate with an RFID tag via a primary transmit and receive signals and to contemporaneously determine a plurality of RSSI levels of the RFID tag over a 360-degree azimuth range via a plurality of secondary receive signals.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Benjamin J. Bekritsky, Michael J. Koch, Charles Burton Swope
  • Publication number: 20200209348
    Abstract: At least some embodiments of the present invention are directed to RFID reader systems configured to estimate a directional bearing of an RFID tag. In an embodiment, the present invention is an RFID system configured in a way that upon a detection of a variance in the direction of a maximum RSSI value for a given RFID tag in response to a plurality of interrogation signals transmitted by an RFID reader over a respective plurality of different directions, the RFID reader retransmits the plurality of interrogation signals over the respective plurality of different directions with successively lower power levels until the only response(s) being received no longer exhibit the previously detected variance.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Michael J. Koch, Benjamin J. Bekritsky, Charles Burton Swope
  • Patent number: 10675765
    Abstract: Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: June 9, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, John Michael Lizzi, Douglas Forman, Charles Burton Theurer, Omar Al Assad, Romano Patrick, Balajee Kannan, Yonatan Gefen
  • Publication number: 20200175237
    Abstract: An antenna assembly for a radio frequency identification (RFID) reader includes: a support member having an inner surface and an opposing outer surface; a first bifilar helical antenna element wound about a first helical axis extending from the outer surface of the support member, wherein the first helical axis is exclusive to the first helical antenna element; a first control terminal on the support member, electrically connected with the first bifilar helical antenna element; a second bifilar helical antenna element wound about a second helical axis extending from the outer surface of the support member, wherein the second helical axis is exclusive to the second helical antenna element; and a second control terminal on the support member, electrically connected with the second bifilar helical antenna element.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 4, 2020
    Inventor: Charles Burton Swope
  • Publication number: 20200158091
    Abstract: A system and method for inspecting, repairing and upgrading wind turbine rotor blades of a wind turbine. The system including deploying one or more cables via an unmanned aerial vehicle (UAV), a balloon, a ballistic mechanism or a catapult to position the one or more cables in draping engagement with a portion of the wind turbine. A climbing robot is positioned to ascend the one or more cables and perform a task related to inspecting for indications, repair of indications or upgrading the rotor blade. A slave robot system, disposed at the base location and anchored to the one or more cables, provides modulation of the cables for positioning of the climbing robot relative to the wind turbine as it ascends and descends the one or more cables. After completion of the task, the climbing robot descends the one or more cables and the cables are removed from the wind turbine.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Shiraj Sen, Todd William Danko, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Publication number: 20200158094
    Abstract: A method including positioning a modular robotic component proximate an area of interest on a surface of a wind turbine. The modular robotic component including a plurality of modules that perform a plurality of tasks. The method further including inspecting the area of interest with the modular robotic component for an indication requiring at least one of repair or upgrade and operating the modular robotic component to perform the plurality of tasks sequentially as the modular robotic component moves along the surface of the wind turbine. A modular robotic component and system including the modular robotic component are disclosed.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Todd William Danko, Shiraj Sen, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Patent number: 10618168
    Abstract: A robotic system includes a processing system comprising at least one processor. The processor generates a plan to monitor the asset. The plan comprises one or more tasks to be performed by the at least one robot. The processor receives sensor data from at least one sensor indicating one or more characteristics of the asset. The processor adjusts the plan to monitor the asset by adjusting or adding one or more tasks to the plan based on one or both of the quality of the acquired data or a potential defect of the asset. The adjusted plan causes the at least one robot to acquire additional data related to the asset when executed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 14, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Eric Michael Gros, Huan Tan, Mauricio Castillo-Effen, Charles Burton Theurer
  • Patent number: 10611372
    Abstract: A dual-mode data capture system includes a capture controller, a point cloud generator, a collision detector, a plurality of cameras viewing a capture volume, and a motion sensor to generate a detection signal when an object arrives at a capture position within the volume. The controller: activates a subset of cameras in a collision detection mode to capture sequences of images of the volume; responsive to receiving the detection signal, activates the cameras in a dimensioning mode to capture a synchronous set of images of the capture position. The collision detector: determines whether the sequences of images indicate a potential collision; and responsive to detection of a potential collision, generates a warning. The point cloud generator: receives the synchronous set of images and generates a point cloud representing the object based on the synchronous set of images, for use in determining dimensions of the object.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: April 7, 2020
    Assignee: Zebra Technologies Corporation
    Inventor: Charles Burton Swope
  • Publication number: 20200094411
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick