Patents by Inventor Charles David Melville

Charles David Melville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912566
    Abstract: A semiconductor substrate includes a first semiconductor layer, a first dielectric layer coupled to the first semiconductor layer, and a second semiconductor layer coupled to the first dielectric layer. The second semiconductor layer includes a base portion substantially aligned with the first dielectric layer and a cantilever portion protruding from an end of the first dielectric layer. The cantilever portion includes a tapered surface tapering from a bottom surface of the second semiconductor layer toward a top surface of the second semiconductor layer.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: February 27, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Steven Alexander-Boyd Hickman, Sarah Colline McQuaide, Abhijith Rajiv, Brian T. Schowengerdt, Charles David Melville
  • Patent number: 11899197
    Abstract: An optical scanner is described and includes an optical beam assembly and a transducer. The optical beam assembly includes a pivoting portion having a cantilevered beam; a stationary portion; a first torsional flexure coupling a first side of the pivoting portion to the stationary portion; and a second torsional flexure coupling a second side of the pivoting portion to the stationary portion. The transducer includes a first magnetic element disposed on the pivoting portion and a second magnetic element disposed on the stationary portion. The first and second magnetic elements are configured to generate magnetic fields that interact to rotate the pivoting portion relative to the stationary portion about an axis defined by the first and second torsional flexures.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: February 13, 2024
    Assignee: Magic Leap, Inc.
    Inventor: Charles David Melville
  • Patent number: 11838496
    Abstract: An eye tracking system includes a pair of glasses including two frames; a light scanning projector coupled to the pair of glasses and operable to scan a beam of light to project an image frame including a plurality of pixels; an eyepiece mounted in one of the two frames and optically coupled to the light scanning projector; one or more photodetectors coupled to one of the two frames and operable to detect time-varying reflected signals; and a processor coupled to the light scanning projector and the photodetectors. The eyepiece includes an exit pupil expander operable to direct a portion of the beam of light towards an eye of a user. Each of the time-varying reflected signals is associated with the plurality of pixels. The processor is operable to correlate the time-varying reflected signals with the plurality of pixels and determine a first eye orientation.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: December 5, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Brian T Schowengerdt, Mathew D. Watson, Samuel Scott Frank, Charles David Melville
  • Publication number: 20230264948
    Abstract: A semiconductor substrate includes a first semiconductor layer, a first dielectric layer coupled to the first semiconductor layer, and a second semiconductor layer coupled to the first dielectric layer. The second semiconductor layer includes a base portion substantially aligned with the first dielectric layer and a cantilever portion protruding from an end of the first dielectric layer. The cantilever portion includes a tapered surface tapering from a bottom surface of the second semiconductor layer toward a top surface of the second semiconductor layer.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 24, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Steven Alexander-Boyd Hickman, Sarah Colline McQuaide, Abhijith Rajiv, Brian T. Schowengerdt, Charles David Melville
  • Patent number: 11661335
    Abstract: A method for fabricating a cantilever having a device surface, a tapered surface, and an end region includes providing a semiconductor substrate having a first side and a second side opposite to the first side and etching a predetermined portion of the second side to form a plurality of recesses in the second side. Each of the plurality of recesses comprises an etch termination surface. The method also includes anisotropically etching the etch termination surface to form the tapered surface of the cantilever and etching a predetermined portion of the device surface to release the end region of the cantilever.
    Type: Grant
    Filed: May 22, 2021
    Date of Patent: May 30, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Steven Alexander-Boyd Hickman, Sarah Colline McQuaide, Abhijith Rajiv, Brian T. Schowengerdt, Charles David Melville
  • Patent number: 11630297
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 18, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, Jr., Charles David Melville
  • Patent number: 11598950
    Abstract: Embodiments of optical scanners, optical projection systems, and methods of scanning optical waveguides and projecting images are described. The disclosed devices, systems and methods advantageously provide an improvement to the compactness, robustness, simplicity, and reliability of optical scanners and optical projection systems by implementing a thermally driven actuator for inducing oscillations of a cantilever within the optical scanners and optical projection systems. The stability and accuracy of optical scanners and optical projection systems are further enhanced using capacitive sensing, feedback, and phase correction techniques described herein.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: March 7, 2023
    Assignee: Magic Leap, Inc.
    Inventor: Charles David Melville
  • Patent number: 11487106
    Abstract: A method of fabricating a multi-element fiber scanner includes providing a fiber optic cable having a cladding region and a fiber core and focusing a laser beam at a series of predetermined locations inside the cladding region of the fiber optic cable. The method also includes creating a plurality of damage sites at the predetermined locations, exposing the fiber optic cable to an etchant solution, and preferentially etching the plurality of damage sites to form a base having a base plane and a longitudinal axis orthogonal to the base plane, a retention collar disposed a predetermined distance along the longitudinal axis from the base, a first fiber link including the fiber core, passing through the base plane, and joined to the retention collar, and a plurality of additional links joined to the base, extending from the base to the retention collar, and joined to the retention collar.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: November 1, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville, William Andrew Lee
  • Patent number: 11460628
    Abstract: A waveguide display system may include an eyepiece waveguide that can have a first surface and a second surface, the waveguide including an incoupling diffractive optical element (DOE) and an outcoupling DOE. The waveguide display system may include a light source and a scanning mirror, and may include reflective and collimating optical elements. The incoupling DOE can be configured to selectively propagate incident light beams to the outcoupling DOE in the waveguide through total internal reflection (TIR).
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: October 4, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Steven Alexander-Boyd Hickman, Charles David Melville, Samuel Scott Frank
  • Patent number: 11442227
    Abstract: A fiber optic element of a fiber scanning system includes a motion actuator having longitudinal side members, an internal orifice, a first support region, a central region, and a second support region. The fiber optic element also includes a first fiber optic cable passing through the internal orifice and having a first fiber joint as well as a second fiber optic cable passing through the internal orifice. The second fiber optic cable has a second fiber joint disposed in the central region and spliced to the first fiber joint, a second coupling region, a light delivery region, and a light emission tip. The light delivery region is characterized by a first diameter and the light emission tip is characterized by a second diameter less than the first diameter.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: September 13, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville
  • Patent number: 11402636
    Abstract: A waveguide display disposed in glasses includes a first pupil expander assembly operable to project a first image defined by a first field of view, and a second pupil expander assembly disposed adjacent the first pupil expander assembly and operable to project a second image defined by a second field of view different from the first field of view. The first pupil expander assembly is operable to emit light at a first non-zero angle with respect to a first emission plane associated with the first pupil expander assembly. The second pupil expander assembly is operable to emit light at a second non-zero angle with respect to a second emission plane associated with the second pupil expander assembly. The first non-zero angle is opposite to the second non-zero angle.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 2, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville
  • Patent number: 11332407
    Abstract: A method of fabricating a variable diameter fiber includes providing a fiber optic cable comprising a cladding region, a fiber core, and a plurality of sacrificial regions disposed in the cladding region and focusing a laser beam at a series of predetermined locations inside the fiber optic cable. The method also includes creating a series of damage sites associated with the series of predetermined locations, wherein the series of damage sites define a variable diameter profile and a latticework in the cladding region of the fiber optic cable. The method further includes exposing the fiber optic cable to an etchant solution, preferentially etching the series of damage sites, and separating peripheral portions of the fiber optic cable to release the variable diameter fiber.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: May 17, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville, An-Shyang Chu, Timothy Mark Dalrymple, Vaibhav Mathur, Alejandro Lopez, Aaron Mark Schuelke
  • Patent number: 11320657
    Abstract: This disclosure includes a description of a pair of virtual or augmented reality glasses that includes an optical scanning system that protrudes at least partially through an opening in an eyepiece of the glasses. The optical scanning system includes an optical fiber or cantilevered beam that extends through the opening and a transducer that drives the optical fiber or cantilevered beam to move in a spiral pattern.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: May 3, 2022
    Assignee: Magic Leap, Inc.
    Inventor: Charles David Melville
  • Publication number: 20220099963
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, JR., Charles David Melville
  • Publication number: 20210363003
    Abstract: A method for fabricating a cantilever having a device surface, a tapered surface, and an end region includes providing a semiconductor substrate having a first side and a second side opposite to the first side and etching a predetermined portion of the second side to form a plurality of recesses in the second side. Each of the plurality of recesses comprises an etch termination surface. The method also includes anisotropically etching the etch termination surface to form the tapered surface of the cantilever and etching a predetermined portion of the device surface to release the end region of the cantilever.
    Type: Application
    Filed: May 22, 2021
    Publication date: November 25, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Steven Alexander-Boyd Hickman, Sarah Colline McQuaide, Abhijith Rajiv, Brian T. Schowengerdt, Charles David Melville
  • Publication number: 20210356737
    Abstract: A method of fabricating a multi-element fiber scanner includes providing a fiber optic cable having a cladding region and a fiber core and focusing a laser beam at a series of predetermined locations inside the cladding region of the fiber optic cable. The method also includes creating a plurality of damage sites at the predetermined locations, exposing the fiber optic cable to an etchant solution, and preferentially etching the plurality of damage sites to form a base having a base plane and a longitudinal axis orthogonal to the base plane, a retention collar disposed a predetermined distance along the longitudinal axis from the base, a first fiber link including the fiber core, passing through the base plane, and joined to the retention collar, and a plurality of additional links joined to the base, extending from the base to the retention collar, and joined to the retention collar.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 18, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville, William Andrew Lee
  • Publication number: 20210344897
    Abstract: An eye tracking system includes a pair of glasses including two frames; a light scanning projector coupled to the pair of glasses and operable to scan a beam of light to project an image frame including a plurality of pixels; an eyepiece mounted in one of the two frames and optically coupled to the light scanning projector; one or more photodetectors coupled to one of the two frames and operable to detect time-varying reflected signals; and a processor coupled to the light scanning projector and the photodetectors. The eyepiece includes an exit pupil expander operable to direct a portion of the beam of light towards an eye of a user. Each of the time-varying reflected signals is associated with the plurality of pixels. The processor is operable to correlate the time-varying reflected signals with the plurality of pixels and determine a first eye orientation.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 4, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Samuel Scott Frank, Charles David Melville
  • Patent number: 11156827
    Abstract: Described herein are embodiments of fiber scanning systems and methods of scanning optical fibers. The disclosed systems and methods advantageously provide an improvement to the scanning range, the oscillation amplitude, and/or the maximum pointing angle for an optical fiber in a fiber scanning system by inducing a buckling of a portion of the optical fiber.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: October 26, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Andrew C. Duenner, Albert Daniel Carlomagno, Xiaoyang Zhang, Michael Robert Johnson, William K. Jones, Jr., Charles David Melville
  • Publication number: 20210325662
    Abstract: A fiber scanning projector includes a piezoelectric element and a scanning fiber passing through and mechanically coupled to the piezoelectric element. The scanning fiber emits light propagating along an optical path. The fiber scanning projector also includes a first polarization sensitive reflector disposed along and perpendicular to the optical path, a quarter wave plate disposed adjacent the first polarization sensitive reflector, and a second polarization sensitive reflector disposed along and perpendicular to the optical path.
    Type: Application
    Filed: May 3, 2021
    Publication date: October 21, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville, Samuel Scott Frank
  • Publication number: 20210278673
    Abstract: A display assembly suitable for use with a virtual or augmented reality headset is described and includes the following: an input coupling grating; a scanning mirror configured to rotate about two or more different axes of rotation; an optical element; and optical fibers, each of which have a light emitting end disposed between the input coupling grating and the scanning mirror and oriented such that light emitted from the light emitting end is refracted through at least a portion of the optical element, reflected off the scanning mirror, refracted back through the optical element and into the input coupling grating. The scanning mirror can be built upon a MEMS type architecture.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 9, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Charles David Melville, Brian T. Schowengerdt, Mathew D. Watson