Patents by Inventor Charles E. Kramer

Charles E. Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040126601
    Abstract: In a method for manufacturing a belt and a belt for use in the production of bulk tissue and towel, and of nonwoven articles and fabrics, a polymeric resin material is applied onto the surface of a base substrate in a precise predetermined pattern which is to be imparted onto products manufactured with the belt. The polymeric resin material is deposited in droplets having an average diameter of 10&mgr; (10 microns) or more. The polymeric resin material is then set by means appropriate to its composition, and, optionally, may be abraded to provide the belt with a uniform thickness, and a smooth, macroscopically monoplanar surface.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Charles E. Kramer, Joseph G. O'Connor, John Skelton, Maurice Paquin
  • Publication number: 20040126570
    Abstract: A method for manufacturing a belt and a belt for use in the production of bulk tissue and towel, and of nonwoven articles and fabrics, requires the application of a sacrificial material onto a base substrate in a predetermined pattern which is to be imparted onto products manufactured with the belt. The sacrificial material is deposited in droplets in a controlled manner so as to control the x, y, z dimension of the material deposited and preferably has having an average diameter of 10&mgr; (10 microns) or more. A polymeric resin material is then deposited on the base substrate in all areas except those on which the sacrificial material has previously been applied. The polymeric resin material is then set by means appropriate to its composition, and the sacrificial material removed. Optionally, the polymeric resin material may then be abraded to provide the belt with a uniform thickness, and a smooth, macroscopically monoplanar surface.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Charles E. Kramer, Joseph G. O'Connor, Maurice Paquin
  • Publication number: 20040087841
    Abstract: A method and apparatus of determining the analyte concentration of a test sample is described. A temperature gradient is introduced into the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. The modulation of the temperature gradient is controlled by a surface temperature modulation. A transfer function is determined that relates the surface temperature modulation to the modulation of the measured infrared radiation. Reference and analytical signals are detected. In the presence of the selected analyte, phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the sample.
    Type: Application
    Filed: June 6, 2003
    Publication date: May 6, 2004
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Publication number: 20030199742
    Abstract: A method of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. Reference and analytical signals are detected. In the presence of the selected analyte, parameter differences between reference and analytical signals are detectable. These parameter differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample. Accuracy is enhanced by inducing a periodically modulated temperature gradient in the test sample. The analytical and reference signals may be measured continuously and the parameter difference integrated over the measurement period to determine analyte concentration.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 23, 2003
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Patent number: 6636753
    Abstract: A solid-state spectrometer for the non-invasive generation and capture of thermal gradient spectra from human or animal tissue. The spectrometer includes an infrared transmissive thermal mass window for inducing a transient temperature gradient in the tissue by means of conductive heat transfer with the tissue, and cooling means in operative combination with the thermal mass window for cooling the thermal mass window. Also provided is an infrared sensor means for detecting infrared emissions emanating from the tissue as the transient temperature gradient progresses into the tissue, and for providing output signals proportional to the detected infrared emissions. Data capture means is provided for sampling the output signals received from the infrared sensor means as the transient temperature gradient progresses into the tissue.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: October 21, 2003
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Bernhard B. Sterling, Daniel S. Goldberger, Joan C. Godfrey, Julian Cortella, David J. Correia, Arthur M. Shulenberger, Charles E. Kramer
  • Patent number: 6633771
    Abstract: A solid-state device for the non-invasive generation and capture of thermal gradient spectra from sample tissue. The device includes an infrared transmissive layered window assembly, a means for inducing a thermal gradient in sample tissues. Also provided is an infrared radiation detector for detecting infrared emissions emanating from the tissue as the transient temperature gradient progresses into the sample tissues. The sensor provides output signals proportional to the detected infrared emissions. A data capture means is provided for the sampling of output signals received from the infrared radiation detector as the induced temperature gradient progresses into the sample tissue.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: October 14, 2003
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Bernhard B. Sterling, Joan C. Godfrey, Julian M. Cortella, David J. Correia, Charles E. Kramer, Arthur M. Shulenberger
  • Patent number: 6580934
    Abstract: A method and apparatus of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. The modulation of the temperature gradient is controlled by a surface temperature modulation. A transfer function is determined that relates the surface temperature modulation to the modulation of the measured infrared radiation. Reference and analytical signals are detected. In the presence of the selected analyte, phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: June 17, 2003
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trembino, Richard A. King, Casper W. Barnes
  • Patent number: 6577885
    Abstract: A method of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. Reference and analytical signals are detected. In the presence of the selected analyte, parameter differences between reference and analytical signals are detectable. These parameter differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample. Accuracy is enhanced by inducing a periodically modulated temperature gradient in the test sample. The analytical and reference signals may be measured continuously and the parameter difference integrated over the measurement period to determine analyte concentration.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: June 10, 2003
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Patent number: 6556850
    Abstract: A method of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. Reference and analytical signals are detected. In the presence of the selected analyte, parameter differences between reference and analytical signals are detectable. These parameter differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample. Accuracy is enhanced by inducing a periodically modulated temperature gradient in the test sample. The analytical and reference signals may be measured continuously and the parameter difference integrated over the measurement period to determine analyte concentration.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: April 29, 2003
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Patent number: 6196046
    Abstract: A calibration standard for calibrating a thermal gradient spectrometer. The calibration standard is a structure having a particular glucose concentration which a thermal gradient spectrometer reads for determining whether the spectrometer is in calibration. The structure of the calibration standard properly mimics the physiology of human tissue. A number of such standards, each containing a different concentration of glucose are provided in kit form with a thermal gradient spectrometer for use in calibrating the spectrometer. The spectrometer is provided with a display and internal circuitry for performing self-calibrating adjustments and a communications port for electronically coupling to a remote computer and database for supplying external calibration commands to said spectrometer.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: March 6, 2001
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Bernhard B. Sterling, Daniel S. Goldberger, Joan C. Godfrey, Kamrava Azizi, David J. Correia, Charles E. Kramer
  • Patent number: 6198949
    Abstract: A solid-state spectrometer for the non-invasive generation and capture of thermal gradient spectra from human or animal tissue. The spectrometer includes an infrared transmissive thermal mass window for inducing a transient temperature gradient in the tissue by means of conductive heat transfer with the tissue, and a cooling element in operative combination with the thermal mass window for cooling the thermal mass window. Also provided is an infrared sensor for detecting infrared emissions emanating from the tissue as the transient temperature gradient progresses into the tissue, and for providing output signals proportional to the detected infrared emissions. A data capture element is provided for sampling the output signals received from the infrared sensor as the transient temperature gradient progresses into the tissue.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: March 6, 2001
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Bernhard B. Sterling, Daniel S. Goldberger, Joan C. Godfrey, Julian Cortella, David J. Correia, Arthur M. Shulenberger, Charles E. Kramer
  • Patent number: 6161028
    Abstract: A method of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. Reference and analytical signals are detected. In the presence of the selected analyte, parameter differences between reference and analytical signals are detectable. These parameter differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample. Accuracy is enhanced by inducing a periodically modulated temperature gradient in the test sample. The analytical and reference signals may be measured continuously and the parameter difference integrated over the measurement period to determine analyte concentration.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: December 12, 2000
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Patent number: 6072180
    Abstract: A spectrometer for the non-invasive generation and capture of thermal gradient spectra from human or animal tissue. The spectrometer includes an infrared transmissive thermal mass for inducing a transient temperature gradient in the tissue by means of conductive heat transfer with the tissue, and cooling means in operative combination with the thermal mass for cooling the thermal mass. Also provided is an infrared sensor means for detecting infrared emissions emanating from the tissue as the transient temperature gradient progresses into the tissue, and for providing output signals proportional to the detected infrared emissions. Data capture means is provided for sampling the output signals received from the infrared sensor means as the transient temperature gradient progresses into the tissue.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: June 6, 2000
    Assignee: Optiscan Biomedical Corporation
    Inventors: Charles E. Kramer, Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Arthur M. Shulenberger, Rick Trebino, Richard A. King
  • Patent number: 6049081
    Abstract: Spectrometric methodology for non-invasively obtaining optical spectra from heterogeneous material for the identification and quantification of constituent compounds. There is provided a transient or steady state subsurface thermal gradient spectroscopic methodology for obtaining in vivo optical spectra relating to the concentration of n analytes at depths to around 330 microns in human tissue, and for determining that concentration from the spectra. The methodology is employable on a wide variety of spectrometric devices, and enables: a real time determination of both surface and reference intensities; a fast, efficient calibration of the spectrometric device; and results in the provision of an analytical parameter which avoids the measurement of the optical path length to enable the extremely accurate calculation of a ratio of concentrations of n analytes in the system under analysis.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: April 11, 2000
    Assignee: Optiscan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Charles E. Kramer, Arthur M. Shulenberger, Rick Trebino, Richard A. King
  • Patent number: 6025597
    Abstract: A noninvasive infrared spectrometer which includes an infrared detector system for measuring the intensity, wavelength, and time varying nature of infrared energy emanating from deep layers within a body. Before detection, the energy emanating from deep within the body passes through layers of that body in the presence of a natural or induced thermal gradient. The measured infrared energy is processed into an absorption spectra and then into a concentration of at least one constituent of the body which concentration may be strongly dependent on the depth into the body. In one embodiment the temperature gradient is induced by chilling the surface of the body to provide a clearer indication of the infrared absorption levels of the deeper constituents. Other embodiments describe the sequential or simultaneous heating and cooling of the heterogenous body to induce and capture the transient infrared absorption spectral information.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: February 15, 2000
    Assignee: Optiscan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Charles E. Kramer, Arthur M. Shulenberger, Rick Trebino, Richard King, Rogelio O. Herrera
  • Patent number: 5900632
    Abstract: Spectrometric methodology for non-invasively obtaining optical spectra from heterogeneous material for the identification and quantification of constituent compounds. There is provided a transient or steady state subsurface thermal gradient spectroscopic methodology for obtaining in vivo optical spectra relating to the concentration of .eta. analytes at depths to around 330 microns in human tissue, and for determining that concentration from the spectra. The methodology is employable on a wide variety of spectrometric devices, and enables: a real time determination of both surface and reference intensities; a fast, efficient calibration of the spectrometric device; and results in the provision of an analytical parameter which avoids the measurement of the optical path length to enable the extremely accurate calculation of a ratio of concentrations of .eta. analytes in the system under analysis.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: May 4, 1999
    Assignee: Optiscan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Charles E. Kramer, Arthur M. Shulenberger, Rick Trebino, Richard A. King
  • Patent number: 5316833
    Abstract: This invention relates to paper machine clothing and has particular reference to paper machine clothing suitable for use in the forming, presing and drying sections of a papermakng machine and comprises a monofilament and/or staple fibre in which themonofilament or staple fibre comprises a polyamide material which has been subjected to a treatment with an aqueous solution of aldehyde in the presence of a catalyst to effect partial cross-linking of the polyamide to provide a gel content thereof within the range of 0.1-75%.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: May 31, 1994
    Assignee: Albany International Corp.
    Inventors: Robert B. Davis, Charles E. Kramer, John P. Rooney, Jr., Chunghi H. Park, Dana B. Eagles, Joseph G. O'Connor, Chian-Hsiang Lin, Kathleen A. Tabis, Maryann C. Kenney, Jeffrey A. Emond
  • Patent number: 5164251
    Abstract: The present invention relates to a felt for use in papermaking machines showing enhanced resistance to degradation in the presence of peroxide which felt comprises a woven base and a sheet contracting layer attached thereto characterized in that at least one of said layer and said woven base comprises fibers of polyamide 12, 12 found by extrusion of a melt of polyamide 12, 12 having intrinsic viscosity of not less than 0.65 dl/gram.
    Type: Grant
    Filed: September 19, 1991
    Date of Patent: November 17, 1992
    Assignee: Albany International Corp.
    Inventors: Robert B. Davis, Charles E. Kramer, Sandra K. Barlow
  • Patent number: 5059378
    Abstract: Composite product of adjacent interconnected layers of heat shrinkable fibers, made by heat shrink processing of interconnected such layers of differential shrinkage properties.
    Type: Grant
    Filed: February 22, 1990
    Date of Patent: October 22, 1991
    Assignee: Albany International Corp.
    Inventors: Dewitt R. Petterson, Charles E. Kramer, Francis A. DiTaranto
  • Patent number: 4874660
    Abstract: The invention relates to an improved felt for a paper making machine having a batt formed from polyamide-12 needled to a woven base. The polyamide 12 batt may contain an antioxidant. The felts in accordance with the invention show much improved longevity and resistance to "flattening" in service.
    Type: Grant
    Filed: April 14, 1988
    Date of Patent: October 17, 1989
    Assignee: Albany Research (UK) Limited
    Inventors: Robert B. Davis, Charles E. Kramer, Sandra K. Barlow