Patents by Inventor Charles H. Joyner

Charles H. Joyner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040235213
    Abstract: An active semiconductor device, such as, buried heterostructure semiconductor lasers, LEDs, modulators, photodiodes, heterojunction bipolar transistors, field effect transistors or other active devices, comprise a plurality of semiconductor layers formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer. An example of a material system for this invention useful at optical telecommunication wavelengths is InGaAsP/InP where the Al-III-V layer comprises InAlAs:O or InAlAs:O:Fe.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 25, 2004
    Inventors: Fred A. Kish, Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Publication number: 20040213582
    Abstract: A monolithic transmitter photonic integrated circuit (TxPIC) chip and a monolithic receiver photonic integrated circuit (RxPIC) chip include a plurality of optical signal channels together with other active elements integrated on a semiconductor chip, which chips further include an optical combiner or decombiner that is a wavelength selective comprising a supergrating or an Echelle grating which provides for a more compact chip compared to an integrated on-chip arrayed waveguide grating functioning as a wavelength selective combiner or decombiner.
    Type: Application
    Filed: May 13, 2004
    Publication date: October 28, 2004
    Inventor: Charles H. Joyner
  • Publication number: 20040067006
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: December 11, 2002
    Publication date: April 8, 2004
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh D. Nguyen, Donald J. Pavinski, Marco E. Sosa
  • Publication number: 20040033004
    Abstract: A photonic integrated circuits (PICs), also referred to as opto-electronic integrated circuits (OEICs), and more particularly to a PIC in the form of an optical receiver PIC or RxPIC for use in an optical transport networks. Also, an optical transmitter PIC (TxPIC) is also disclosed in conjunction with an RxPIC in an optical transport network. The chip is cast from an InP wafer and is made from Group III-V elemental materials in the InGaAsP/InP regime with fabrication accomplished through selective metalorganic vapor phase epitaxy (MOVPE) or also known as metalorganic chemical vapor deposition (MOCVD). Integrated on the chip, starting at the input end which is coupled to receive multiplexed optical data signals from an optical transport network is an optical amplifier, an optical demultiplexer, and a plurality of on-chip photodiodes (PDs) each to receive a demultiplexed data signal from the AWG DEMUX for optical-to-electrical signal conversion.
    Type: Application
    Filed: October 8, 2002
    Publication date: February 19, 2004
    Inventors: David F. Welch, Radhakrishnan L. Nagarajan, Fred A. Kish, Mark J. Missey, Vincent G. Dominic, Atul Mathur, Frank H. Peters, Charles H. Joyner, Richard P. Schneider, Ting-Kuang Chiang
  • Publication number: 20030223672
    Abstract: Disclosed are apparatus- and methods of reducing insertion loss, passivation, planarization and in-wafer testing of integrated optical components and in-wafer chips in photonic integrated circuits (PICs).
    Type: Application
    Filed: March 10, 2003
    Publication date: December 4, 2003
    Inventors: Charles H. Joyner, Mark J. Missey, Radhakrishnan L. Nagarajan, Frank H. Peters, Mehrdad Ziari, Fred A. Kish
  • Publication number: 20030198267
    Abstract: The invention is a semiconductor optical device and method of fabrication where the device includes an active region with an active layer having a first index of refraction, and a blocking region having a second, lower index of refraction. A semiconductor layer having an index of refraction higher than the blocking region formed over both the active and blocking regions so that the layer is in closer proximity to the active layer in areas not covered by the blocking region so as to decrease the difference between the effective index of refraction in the active region and the effective refractive index of the blocking region. Such devices are particularly useful for pumping optical amplifiers since greater power can be achieved while maintaining single mode emission.
    Type: Application
    Filed: December 20, 2000
    Publication date: October 23, 2003
    Inventors: Si Hyung Cho, William Crossley Dautremont-Smith, Sun-Yuan Huang, Charles H. Joyner, Ronald Eugene Leibenguth, Abdallah Ougazzaden, Claude Lewis Reynolds
  • Patent number: 6635502
    Abstract: The invention is a semiconductor optical device and method of fabrication where the device includes an active region with an active layer having a first index of refraction, and a blocking region having a second, lower index of refraction. A semiconductor layer having an index of refraction higher than the blocking region is formed over both the active and blocking regions so that the semiconductor layer is in closer proximity to the active layer in areas not covered by the blocking region so as to decrease the difference between the effective index of refraction in the active region and the effective refractive index of the blocking region. Such devices are particularly useful for pumping optical amplifiers since greater power can be achieved while maintaining single mode emission.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: October 21, 2003
    Assignee: TriQuint Technology Holding Co.
    Inventors: Si Hyung Cho, William Crossley Dautremont-Smith, Sun-Yuan Huang, Charles H Joyner, Ronald Eugene Leibenguth, Abdallah Ougazzaden, Claude Lewis Reynolds, Jr.
  • Publication number: 20030173571
    Abstract: An active semiconductor device, such as, buried heterostructure semiconductor lasers, LEDs, modulators, photodiodes, heterojunction bipolar transistors, field effect transistors or other active devices, comprise a plurality of semiconductor layers formed on a substrate with one of the layers being an active region. A current channel is formed through this active region defined by current blocking layers formed on adjacent sides of a designated active region channel where the blocking layers substantially confine the current through the channel. The blocking layers are characterized by being an aluminum-containing Group III-V compound, i.e., an Al-III-V layer, intentionally doped with oxygen from an oxide source. Also, wet oxide process or a deposited oxide source may be used to laterally form a native oxide of the Al-III-V layer. An example of a material system for this invention useful at optical telecommunication wavelengths is InGaAsP/InP where the Al-III-V layer comprises InAlAs:O or InAlAs:O:Fe.
    Type: Application
    Filed: December 16, 2002
    Publication date: September 18, 2003
    Inventors: Fred A. Kish, Sheila K. Mathis, Charles H. Joyner, Richard P. Schneider
  • Patent number: 6603592
    Abstract: An optical-to-optical wavelength converter for converting a plurality of optical bits from a first wavelength in a first wavelength band to a second wavelength in a second wavelength band. The optical-to-optical wavelength converter employs a directional coupler. The directional coupler includes at least one optical element having an index of refraction, which changes in response to optical power substantially in the first wavelength band.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: August 5, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Charles H. Joyner, Jacco Leonard Pleumeekers
  • Patent number: 6571038
    Abstract: A multimode interference coupler having a tunable power splitting ratio and a method of tuning the splitting ratio. The tuning of the power splitting ratio is achieved by varying an effective refractive index around a portion in a multimode interference section.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: May 27, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Charles H. Joyner, Juerg Leuthold
  • Publication number: 20030095737
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20030095736
    Abstract: A monolithic transmitter photonic integrated circuit (TxPIC) chip comprises an array of modulated sources formed on the PIC chip and having different operating wavelengths according to a standardized wavelength grid and providing signal outputs of different wavelengths. Pluralities of wavelength tuning elements are integrated on the chip, one associated with each of the modulated sources. An optical combiner is formed on the PIC chip and the signal outputs of the modulated sources are optically coupled to one or more inputs of the optical combiner and provided as a combined channel signal output from the combiner. The wavelength tuning elements provide for tuning the operating wavelength of the respective modulated sources to be approximate or to be chirped to the standardized wavelength grid. The wavelength tuning elements are temperature changing elements, current and voltage changing elements or bandgap changing elements.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: Fred A. Kish, Charles H. Joyner, David F. Welch, Jonas Webjorn, Robert B. Taylor, Alan C. Nilsson
  • Publication number: 20030081878
    Abstract: A monolithic photonic integrated circuit (PIC) chip comprises an array of modulated sources providing a plurality of channel signals of different wavelengths and an optical combiner coupled to receive the channel signals and produce a combined output of the channel signals. The arrays of modulated sources are formed as ridge waveguides to enhance the output power from the respective modulated sources so that the average output power from the sources is approximately 2 to 4 times higher than in the case of comparable arrays of modulated sources formed as buried waveguides.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 1, 2003
    Inventors: Charles H. Joyner, Fred A. Kish, Frank H. Peters, Atul Mathur, David F. Welch, Andrew G. Dentai, Damien Lambert, Richard P. Schneider, Mark J. Missey
  • Patent number: 6556605
    Abstract: A mesa stripe buried heterostructure semiconductor laser with no intediffusion of atoms between doped regions and a method of its formation are disclosed. A double dielectric mask is used to form the mesa stripe. The first mask is then partially etched and a Si-doped InP layer is selectively grown. The first and second mask are subsequently etched away and an InP(Zn) clad layer, along with a Zn-doped InGaAs contact layer, are formed. This way, the resulting structure has no contact between the InP(Zn) clad layer and the InP(Fe) layer, and the dopant atoms interdiffusion is suppressed.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: April 29, 2003
    Assignee: Triquent Technology Holding, Co.
    Inventors: Gleb E. Shtengel, Utpal Kumar Chakrabarti, Charles William Lentz, Charles H. Joyner, Abdallah Ougazzaden
  • Patent number: 6437905
    Abstract: A wavelength converter with a monolithically integrated delay loop in a delayed interference configuration that needs only one SOA, only one in and one output fiber. Unlike prior-art hybrid wavelength converters, our inventive device has a monolithically integrated delay loop utilizing an asymmetric splitting ratio.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: August 20, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Charles H Joyner, Jurg Leuthold
  • Patent number: 6327401
    Abstract: A multifrequency laser that uses a waveguide grating router as the filter for frequency control and encloses it within a structure that forms at each selected frequency two paths of slightly different lengths to create a DiDomenico-type of laser that uses a pair of coupled cavities for frequency control. In one embodiment two sets, each of N optical amplifications, are used to create two resonant paths at each frequency. In other embodiments, a portion of the output power is made to travel a second path to provide the second optical path.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: December 4, 2001
    Assignee: Agere Systems Optoelectronics Guardian Corp.
    Inventors: Christopher Richard Doerr, Charles H Joyner, Lothar Benedict Erhard Josef Moeller, Martin Zirngibl
  • Patent number: 6304350
    Abstract: Temperature compensation of a wavelength-division-multiplexed (WDM) passive optical network (PON) communication system uses power measurements from each of it remote nodes (RNs) to adjust the frequency of an associated multifrequency laser (MFL). Changes in the power level at each RN caused by frequency drift of its waveguide grating router (WGR), due to changes in the WGR temperature, is determined by monitoring the power level received at each RN and corrected by appropriate changes in the temperature of the associated MFL. The WGR uses one output port (e.g., channel 1) which is looped-back through the WGR a second time to increase the temperature sensitivity of the power measurements. A temperature-control algorithm controls the temperature of the MFL as a function of changes in the received power at the WGR.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: October 16, 2001
    Assignee: Lucent Technologies Inc
    Inventors: Christopher Richard Doerr, Charles H. Joyner, Rene Henri Monnard, Lawrence Warren Stulz, Martin Zirngibl
  • Patent number: 6275317
    Abstract: A hybrid integrated optical transmitter comprising a wavelength selectable laser (WSL) source coupled to an optical amplifier/modulator has been realized. Disposed between the optical combiner and the optical amplifier/modulator is an “optical isolator.” The optical isolator includes at least a Faraday rotator and, either solely or in combination with a single polarizer and/or half-wave plate is used to selectively rotate and pass polarized light egressing from the wavelength selectable laser source. Optical isolation is achieved by the egressing radiation from and back reflections incident on the laser source being at two mutually exclusive orthogonal polarization states or by the reflections being totally extinguished. Advantageously, the laser source is unresponsive to orthogonally polarized light, and hence any unwanted back reflections do not substantially affect the operating characteristics of the laser(s).
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: August 14, 2001
    Assignee: Agere Systems Optoelectronics Guardian Corp.
    Inventors: Christopher Richard Doerr, John Evan Johnson, Charles H. Joyner, Leonard Jan-Peter Ketelsen, Uziel Koren, Dirk Joachim Muehlner, Rudolph Conrad Schweizer, Lawrence Warren Stulz
  • Patent number: 6245144
    Abstract: A method of controlling the relative amounts of silicon dopant inside and outside of an enhanced growth region on an indium phosphide substrate using a metalorganic chemical vapor deposition (MOCVD) process. The method includes the steps of positioning the indium phosphide substrate in a reactor chamber, and defining an enhanced growth region on the substrate by depositing a dielectric mask on the substrate. The indium phosphide substrate is heated to a growth temperature of between about 600 and 630° C., and the pressure in the reactor chamber is adjusted to between about 40 and 80 Torr. A first gas contains a metalorganic compound comprising indium and a hydrogen carrier gas flow of between about 12 and 16 liters/minute, and a second gas containing a phosphide and a doping gas containing a silicon dopant at a flow rate of between are introduced into the reactor chamber.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: June 12, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Thomas C. Bitner, Chris W. Ebert, Michael Geva, Charles H. Joyner
  • Patent number: 6240118
    Abstract: A multichannel laser is based on an interleaved chirped waveguide grating router. An interferometric modulator is incorporated inside a laser cavity by means of a waveguide grating router and enables independent modulation of any of the wavelengths of the multichannel laser. The interferometric modulator operates independently of the wavelength selection elements of the waveguide grating router used to select the wavelengths of the multichannel laser.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: May 29, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Christopher Richard Doerr, Charles H. Joyner