Patents by Inventor Charles I. Grosjean

Charles I. Grosjean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210159875
    Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.
    Type: Application
    Filed: December 8, 2020
    Publication date: May 27, 2021
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Patent number: 10910341
    Abstract: First and second contacts are formed on first and second wafers from disparate first and second conductive materials, at least one of which is subject to surface oxidation when exposed to air. A layer of oxide-inhibiting material is disposed over a bonding surface of the first contact and the first and second wafers are positioned relative to one another such that a bonding surface of the second contact is in physical contact with the layer of oxide-inhibiting material. Thereafter, the first and second contacts and the layer of oxide-inhibiting material are heated to a temperature that renders the first and second contacts and the layer of oxide-inhibiting material to liquid phases such that at least the first and second contacts alloy into a eutectic bond.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: February 2, 2021
    Assignee: SiTime Corporation
    Inventors: Paul M. Hagelin, Charles I. Grosjean
  • Patent number: 10892733
    Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: January 12, 2021
    Assignee: SITIME CORPORATION
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Publication number: 20200391997
    Abstract: A semiconductor device includes a first silicon layer disposed between second and third silicon layers and separated therefrom by respective first and second oxide layers. A cavity within the first silicon layer is bounded by interior surfaces of the second and third silicon layers, and a passageway extends through the second silicon layer to enable material removal from within the semiconductor device to form the cavity. A metal feature is disposed within the passageway to hermetically seal the cavity.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 17, 2020
    Inventors: Michael Julian Daneman, Charles I. Grosjean, Paul M. Hagelin
  • Patent number: 10833632
    Abstract: In an integrated circuit device having a microelectromechanical-system (MEMS) resonator and a temperature transducer, a clock signal is generated by sensing resonant mechanical motion of the MEMS resonator and a temperature signal indicative of temperature of the MEMS resonator is generated via the temperature transducer. The clock signal and the temperature signal are output from the integrated circuit device concurrently.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 10, 2020
    Assignee: SiTime Corporation
    Inventors: Sassan Tabatabaei, Kamran Souri, Saleh Heidary Shalmany, Charles I. Grosjean
  • Patent number: 10800650
    Abstract: A MEMS element within a semiconductor device is enclosed within a cavity bounded at least in part by hydrogen-permeable material. A hydrogen barrier is formed within the semiconductor device to block propagation of hydrogen into the cavity via the hydrogen-permeable material.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 13, 2020
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Paul M. Hagelin, Michael Julian Daneman, Ginel C. Hill, Aaron Partridge
  • Patent number: 10737934
    Abstract: A semiconductor device includes first and second exposed electrical contacts and a cavity having a microelectromechanical system (MEMS) structure therein. A conductive path extends from the first exposed electrical contact to the cavity and an over-voltage protection element electrically is coupled between the first and second exposed electrical contacts.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 11, 2020
    Assignee: SiTime Corporation
    Inventors: Nicholas Miller, Ginel C. Hill, Charles I. Grosjean, Michael Julian Daneman, Paul M. Hagelin, Aaron Partridge
  • Patent number: 10696547
    Abstract: A semiconductor device includes a first silicon layer disposed between second and third silicon layers and separated therefrom by respective first and second oxide layers. A cavity within the first silicon layer is bounded by interior surfaces of the second and third silicon layers, and a passageway extends through the second silicon layer to enable material removal from within the semiconductor device to form the cavity. A metal feature is disposed within the passageway to hermetically seal the cavity.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 30, 2020
    Assignee: SiTime Corporation
    Inventors: Michael Julian Daneman, Charles I. Grosjean, Paul M. Hagelin
  • Publication number: 20200186084
    Abstract: One or more heating elements are provided to heat a MEMS component (such as a resonator) to a temperature higher than an ambient temperature range in which the MEMS component is intended to operate—in effect, heating the MEMS component and optionally related circuitry to a steady-state “oven” temperature above that which would occur naturally during component operation and thereby avoiding temperature-dependent performance variance/instability (frequency, voltage, propagation delay, etc.). In a number of embodiments, an IC package is implemented with distinct temperature-isolated and temperature-interfaced regions, the former bearing or housing the MEMS component and subject to heating (i.e., to oven temperature) by the one or more heating elements while the latter is provided with (e.g., disposed adjacent) one or more heat dissipation paths to discharge heat generated by transistor circuitry (i.e., expel heat from the integrated circuit package).
    Type: Application
    Filed: November 29, 2019
    Publication date: June 11, 2020
    Inventors: Carl Arft, Aaron Partridge, Markus Lutz, Charles I. Grosjean
  • Patent number: 10676349
    Abstract: Multiple degenerately-doped silicon layers are implemented within resonant structures to control multiple orders of temperature coefficients of frequency.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: June 9, 2020
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Nicholas Miller, Paul M. Hagelin, Ginel C. Hill, Joseph C. Doll
  • Publication number: 20200028485
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Application
    Filed: January 10, 2019
    Publication date: January 23, 2020
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill
  • Patent number: 10541666
    Abstract: A resonant member of a MEMS resonator oscillates in a mechanical resonance mode that produces non-uniform regional stresses such that a first level of mechanical stress in a first region of the resonant member is higher than a second level of mechanical stress in a second region of the resonant member. A plurality of openings within a surface of the resonant member are disposed more densely within the first region than the second region and at least partly filled with a compensating material that reduces temperature dependence of the resonant frequency corresponding to the mechanical resonance mode.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 21, 2020
    Assignee: SiTime Corporation
    Inventors: Paul M. Hagelin, Charles I. Grosjean
  • Patent number: 10541224
    Abstract: First and second contacts are formed on first and second wafers from disparate first and second conductive materials, at least one of which is subject to surface oxidation when exposed to air. A layer of oxide-inhibiting material is disposed over a bonding surface of the first contact and the first and second wafers are positioned relative to one another such that a bonding surface of the second contact is in physical contact with the layer of oxide-inhibiting material. Thereafter, the first and second contacts and the layer of oxide-inhibiting material are heated to a temperature that renders the first and second contacts and the layer of oxide-inhibiting material to liquid phases such that at least the first and second contacts alloy into a eutectic bond.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: January 21, 2020
    Assignee: SiTime Corporation
    Inventors: Paul M. Hagelin, Charles I. Grosjean
  • Patent number: 10476477
    Abstract: A microelectromechanical system (MEMS) resonator includes a substrate having a substantially planar surface and a resonant member having sidewalls disposed in a nominally perpendicular orientation with respect to the planar surface. Impurity dopant is introduced via the sidewalls of the resonant member such that a non-uniform dopant concentration profile is established along axis extending between the sidewalls parallel to the substrate surface and exhibits a relative minimum concentration in a middle region of the axis.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: November 12, 2019
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Ginel C. Hill, Paul M. Hagelin, Renata Melamud Berger, Aaron Partridge, Markus Lutz
  • Patent number: 10263596
    Abstract: Degenerately doped semiconductor materials are deployed within resonant structures to control the first and higher order temperature coefficients of frequency, thereby enabling temperature dependence to be engineered without need for cumulative material layers which tend to drive up cost and compromise resonator performance.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: April 16, 2019
    Assignee: SiTime Corporation
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Patent number: 10218333
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: February 26, 2019
    Assignee: SiTime Corporation
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill
  • Patent number: 10192850
    Abstract: First and second contacts are formed on first and second wafers from disparate first and second conductive materials, at least one of which is subject to surface oxidation when exposed to air. A layer of oxide-inhibiting material is disposed over a bonding surface of the first contact and the first and second wafers are positioned relative to one another such that a bonding surface of the second contact is in physical contact with the layer of oxide-inhibiting material. Thereafter, the first and second contacts and the layer of oxide-inhibiting material are heated to a temperature that renders the first and second contacts and the layer of oxide-inhibiting material to liquid phases such that at least the first and second contacts alloy into a eutectic bond.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: January 29, 2019
    Assignee: SiTime Corporation
    Inventors: Paul M. Hagelin, Charles I. Grosjean
  • Publication number: 20180257929
    Abstract: A semiconductor device includes a first silicon layer disposed between second and third silicon layers and separated therefrom by respective first and second oxide layers. A cavity within the first silicon layer is bounded by interior surfaces of the second and third silicon layers, and a passageway extends through the second silicon layer to enable material removal from within the semiconductor device to form the cavity. A metal feature is disposed within the passageway to hermetically seal the cavity.
    Type: Application
    Filed: February 14, 2018
    Publication date: September 13, 2018
    Inventors: Michael Julian Daneman, Charles I. Grosjean, Paul M. Hagelin
  • Publication number: 20180226942
    Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.
    Type: Application
    Filed: April 6, 2018
    Publication date: August 9, 2018
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Patent number: 9948273
    Abstract: A resonant member of a MEMS resonator oscillates in a mechanical resonance mode that produces non-uniform regional stresses such that a first level of mechanical stress in a first region of the resonant member is higher than a second level of mechanical stress in a second region of the resonant member. A plurality of openings within a surface of the resonant member are disposed more densely within the first region than the second region and at least partly filled with a compensating material that reduces temperature dependence of the resonant frequency corresponding to the mechanical resonance mode.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: April 17, 2018
    Assignee: SiTime Corporation
    Inventors: Paul M. Hagelin, Charles I. Grosjean