Patents by Inventor Charles L. Byers

Charles L. Byers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200390970
    Abstract: An ambulatory infusing device including a housing, a reservoir defining an interior volume, a wall associated with the housing and having an inner surface that faces into the reservoir interior volume, and a filter assembly. The filter assembly may include a filter assembly housing with a housing filter portion having a free end associated with the inner surface of the wall and a filter supporting volume that extends to the free end of the housing filter portion, and a filter located within the filter supporting volume that extends to at least the free end of the housing filter portion.
    Type: Application
    Filed: May 31, 2020
    Publication date: December 17, 2020
    Applicant: The Alfred E. Mann Found. For Scientific Research
    Inventors: Susan McConnell Montalvo, Charles L. Byers, Rudolph A. Montalvo, Milton Stott, Darren Y.K. Yap
  • Patent number: 10687719
    Abstract: A hermetically sealed biocompatible pressure sensor module configured for implant at a desired site at which a pressure is to be measured. Anodic bonding of the pressure module package components which have similar thermal coefficients of expansion provides low stress bonding and maintains long term reliability, dependability and accuracy. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. Operating power for the pressure sensor module is provided by the external controller and an internal rechargeable energy storage component. Accordingly, the pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: June 23, 2020
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Patent number: 10675403
    Abstract: An ambulatory infusing device including a housing, a reservoir defining an interior volume, a wall associated with the housing and having an inner surface that faces into the reservoir interior volume, and a filter assembly. The filter assembly may include a filter assembly housing with a housing filter portion having a free end associated with the inner surface of the wall and a filter supporting volume that extends to the free end of the housing filter portion, and a filter located within the filter supporting volume that extends to at least the free end of the housing filter portion.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: June 9, 2020
    Assignee: The Alfred E. Mann Found. For Scientific Research
    Inventors: Susan McConnell Montalvo, Charles L. Byers, Rudolph A. Montalvo, Milton Stott, Darren Y. K. Yap
  • Publication number: 20180214632
    Abstract: An ambulatory infusing device including a housing, a reservoir defining an interior volume, a wall associated with the housing and having an inner surface that faces into the reservoir interior volume, and a filter assembly. The filter assembly may include a filter assembly housing with a housing filter portion having a free end associated with the inner surface of the wall and a filter supporting volume that extends to the free end of the housing filter portion, and a filter located within the filter supporting volume that extends to at least the free end of the housing filter portion.
    Type: Application
    Filed: November 27, 2017
    Publication date: August 2, 2018
    Applicant: Medallion Therapeutics, Inc.
    Inventors: Susan McConnell Montalvo, Charles L. Byers, Rudolph A. Montalvo, Milton Stott, Darren Y.K. Yap
  • Publication number: 20170354337
    Abstract: A hermetically sealed biocompatible pressure sensor module configured for implant at a desired site at which a pressure is to be measured. Anodic bonding of the pressure module package components which have similar thermal coefficients of expansion provides low stress bonding and maintains long term reliability, dependability and accuracy. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. Operating power for the pressure sensor module is provided by the external controller and an internal rechargeable energy storage component. Accordingly, the pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system.
    Type: Application
    Filed: July 3, 2017
    Publication date: December 14, 2017
    Inventors: Siegmar Schmidt, Charles L. Byers, Jiang Guangqiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Patent number: 9713429
    Abstract: A pressure sensor module configured for implant at a desired site at which a pressure is to be measured. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. The pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system. An exemplary use is in a three pressure sensor system including a flow control valve in a shunt to treat hydrocephalus. An embodiment of the invention includes a pressure sensor and associated electromagnetic coils embedded in the tip portion of the shunt for measuring the pressure of fluid externally of the shunt at the tip portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 25, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Patent number: 9714853
    Abstract: A microfluidic flow rate sensor includes a droplet within a channel and a droplet movement detector that generates a signal based on the position and/or movement of the droplet within the channel. A processor determines the flow rate of a fluid through the channel based on the signal received from the droplet movement detector. In one example, the droplet movement detector is an optical detector, such as a combination of a lens and an image capturing device. In other examples, the droplet is electrically conductive, and at least a portion of the channel is conductive or includes electrical contacts. The position of the droplet within the channel is determined by observing the electrical characteristics of the channel.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 25, 2017
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Charles L. Byers, Chris J. Hetlinger
  • Patent number: 9622677
    Abstract: A brain implant device includes a housing containing communication and control electronics coupled to a conduit configured for monitoring signals from a brain's motor cortex and providing stimulation signals to the brain's sensory cortex. The brain implant device is capable of wireless communication with an external communication and control signal source by means of an antenna provided in the housing. The conduit is flexible and may contain upwards of 128 electrical conductors providing electrical connections between the device electronics and related sites on the motor and/or sensory cortex by means of a plurality of electrically conductive protuberances extending from the conduit and adapted for contact with such sites.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 18, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Howard H. Stover, John C. Gord, Charles L. Byers, Joseph H. Schulman, Guangqiang Jiang, Ross Davis
  • Publication number: 20160025535
    Abstract: A microfluidic flow rate sensor includes a droplet within a channel and a droplet movement detector that generates a signal based on the position and/or movement of the droplet within the channel. A processor determines the flow rate of a fluid through the channel based on the signal received from the droplet movement detector. In one example, the droplet movement detector is an optical detector, such as a combination of a lens and an image capturing device. In other examples, the droplet is electrically conductive, and at least a portion of the channel is conductive or includes electrical contacts. The position of the droplet within the channel is determined by observing the electrical characteristics of the channel.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 28, 2016
    Applicant: Alfred E. Mann Foundation for Scientific Research
    Inventors: Charles L. Byers, Chris J. Hetlinger
  • Patent number: 9083312
    Abstract: An electronic filter circuit includes an electromechanical resonator that is mounted directly to the surface of a silicon integrated circuit, rather than being a surface mounted or leaded filter can on a circuit board. This filter circuit allows the integrated circuit electronic package to be significantly smaller than a conventional electromechanical resonator package. The electromechanical resonator may be protected during processing and during use with a protective cover that is made of a material such as titanium. The protective cover is attached to the integrated circuit chip.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 14, 2015
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Charles L. Byers, Joseph H. Schulman, Gary D. Schnittgrund
  • Patent number: 8991680
    Abstract: The electrode array is a device for making electrical contacts with cellular tissue or organs. The electrode array includes an assembly of electrically conductive electrodes arising from a substrate where the electrodes are hermetically bonded to the substrate. A method of manufacture of an electrode array and associated circuitry is disclosed where the braze preform tab disappears during the braze bonding process and is completely drawn into the substrate feedthrough holes such that the braze perform tab is completely involved in the braze joint and is no longer connecting the adjacent electrodes.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 31, 2015
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Guangqiang Jiang, Charles L. Byers
  • Patent number: 8862235
    Abstract: A brain implant device includes a housing containing communication and control electronics coupled to a conduit configured for monitoring signals from a brain's motor cortex and providing stimulation signals to the brain's sensory cortex. The brain implant device is capable of wireless communication with an external communication and control signal source by means of an antenna provided in the housing. The conduit is flexible and may contain upwards of 128 electrical conductors providing electrical connections between the device electronics and related sites on the motor and/or sensory cortex by means of a plurality of electrically conductive protuberances extending from the conduit and adapted for contact with such sites.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: October 14, 2014
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Howard H. Stover, John C. Gord, Charles L. Byers, Joseph H. Schulman, Guangqiang Jiang, Ross Davis
  • Publication number: 20140243703
    Abstract: A hermetically sealed biocompatible pressure sensor module configured for implant at a desired site at which a pressure is to be measured. Anodic bonding of the pressure module package components which have similar thermal coefficients of expansion provides low stress bonding and maintains long term reliability, dependability and accuracy. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. Operating power for the pressure sensor module is provided by the external controller and an internal rechargeable energy storage component. Accordingly, the pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 28, 2014
    Applicant: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Patent number: 8632607
    Abstract: Permanent magnets or electromagnets or a combination of such magnets are provided to retain a prosthetic device on an extremity or limb, such as an amputated arm. The prosthesis utilizes the opposing forces, which are developed by virtue of like magnetic poles being in proximity to each other, to urge the prosthesis to remain attached to the extremity. The prosthesis is prevented from rotation by virtue of a centering force that is provided by an attachment magnet in the prosthesis being placed between two implanted magnets. A removable mounting ring is placed over the prosthesis to maintain it on the extremity.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: January 21, 2014
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers
  • Patent number: 8336191
    Abstract: An electronics filter circuit includes an electromechanical resonator that is mounted directly to the surface of a silicon integrated circuit, rather than being a surface mounted or leaded filter can on a circuit board. This filter circuit allows the integrated circuit electronic package to be significantly smaller than a conventional electromechanical resonator package. The electromechanical resonator may be protected during processing and during use with a protective cover that is made of a material such as titanium. The protective cover is attached to the integrated circuit chip.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 25, 2012
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Charles L. Byers, Joseph H. Schulman, Gary D. Schnittgrund
  • Patent number: 8024022
    Abstract: The electrode array is a device for making electrical contacts with cellular tissue or organs. The electrode array includes an assembly of electrically conductive electrodes arising from a substrate where the electrodes are hermetically bonded to the substrate. The electrodes also include an insulating layer which leaves at least one zone or at least one hole exposed for making focused electrical contact with the tissue. A hole passing completely or partially through the electrode may further provide an anchor to the living tissue, thereby stabilizing the array with respect to the tissue being examined. Also, a method of manufacture of an electrode array and associated circuitry is disclosed.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: September 20, 2011
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Guangqiang Jiang, Charles L. Byers
  • Publication number: 20110224805
    Abstract: Permanent magnets or electromagnets or a combination of such magnets are provided to retain a prosthetic device on an extremity or limb, such as an amputated arm. The prosthesis utilizes the opposing forces, which are developed by virtue of like magnetic poles being in proximity to each other, to urge the prosthesis to remain attached to the extremity. The prosthesis is prevented from rotation by virtue of a centering force that is provided by an attachment magnet in the prosthesis being placed between two implanted magnets. A removable mounting ring is placed over the prosthesis to maintain it on the extremity.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 15, 2011
    Applicant: ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: JOSEPH H. SCHULMAN, CHARLES L. BYERS
  • Patent number: 7967869
    Abstract: Permanent magnets or electromagnets or a combination of such magnets are provided as a method to retain a prosthetic device on an extremity, such as an arm. The prosthesis utilizes the opposing forces, which are developed by virtue of like magnetic poles being in proximity to each other, to urge the prosthesis to remain attached to the extremity. The prosthesis is prevented from rotation by virtue of a centering force that is provided by an attachment magnet in the prosthesis being placed between two implanted magnets. A removable mounting ring is placed over the prosthesis straps to maintain them in proximity to the extremity.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: June 28, 2011
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers
  • Patent number: 7722913
    Abstract: An implantable enzyme-based monitoring system suitable for long term in vivo use to measure the concentration of prescribed substances such as glucose is provided. In one embodiment, the implantable enzyme-based monitoring system includes at least one sensor assembly, an outer membrane surrounding the sensor assembly and having a window therein, and a polymeric window cover affixed to the outer membrane and covering the window. Preferably, the outer membrane of the monitoring system is silicone and the window cover is a polymer of 2-hydroxyethyl methacrylate (HEMA), N,N,-dimethylaminoethyl methacrylate (DMAEMA) and methacrylic acid (MA). Also provided herein is an implantable enzyme-based monitoring system having at least one sensor assembly, an outer membrane surrounding the sensor assembly and a coating affixed to the exterior surface of the outer membrane, wherein the coating resists blood coagulation and protein binding to the exterior surface of the outer membrane.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: May 25, 2010
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, Gerald E. Adomian, Michael S. Colvin
  • Patent number: 7555328
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensor may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 30, 2009
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield