Patents by Inventor Charles M. Lieber

Charles M. Lieber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080116491
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Application
    Filed: November 21, 2005
    Publication date: May 22, 2008
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Patent number: 7301199
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: November 27, 2007
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong
  • Patent number: 7274208
    Abstract: An apparatus and methods for a sublithographic programmable logic array (PLA) are disclosed. The apparatus allows combination of non-restoring, programmable junctions and fixed (non-programmable) restoration logic to implement any logic function or any finite-state machine. The methods disclosed teach how to integrate fixed, restoration logic at sublithographic scales along with programmable junctions. The methods further teach how to integrate addressing from the microscale so that the nanoscale crosspoint junctions can be programmed after fabrication.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 25, 2007
    Assignee: California Institute of Technology
    Inventors: André DeHon, Michael J. Wilson, Charles M. Lieber
  • Patent number: 7256466
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: August 14, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7254151
    Abstract: This invention generally relates to nanotechnology and nanoelectronics as well as associated methods and devices. In particular, the invention relates to nanoscale optical components such as electroluminescence devices (e.g., LEDs), amplified stimulated emission devices (e.g., lasers), waveguides, and optical cavities (e.g., resonators). Articles and devices of a size greater than the nanoscale are also included. Such devices can be formed from nanoscale wires such as nanowires or nanotubes. In some cases, the nanoscale wire is a single crystal. In one embodiment, the nanoscale laser is constructed as a Fabry-Perot cavity, and is driven by electrical injection. Any electrical injection source may be used. For example, electrical injection may be accomplished through a crossed wire configuration, an electrode or distributed electrode configuration, or a core/shell configuration. The output wavelength can be controlled, for example, by varying the types of materials used to fabricate the device.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 7, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yu Huang, Ritesh Agarwal
  • Patent number: 7211464
    Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: May 1, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Yi Cui, Xiangfeng Duan, Yu Huang
  • Patent number: 7172953
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: February 6, 2007
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Patent number: 7129554
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: October 31, 2006
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7073157
    Abstract: An architecture for nanoscale electronics is disclosed. The architecture comprises arrays of crossed nanoscale wires having selectively programmable crosspoints. Nanoscale wires of one array are shared by other arrays, thus providing signal propagation between the arrays. Nanoscale signal restoration elements are also provided, allowing an output of a first array to be used as an input to a second array. Signal restoration occurs without routing of the signal to non-nanoscale wires.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: July 4, 2006
    Assignees: California Institute of Technology, President and Fellows of Harvard College
    Inventors: André DeHon, Charles M. Lieber
  • Patent number: 6963077
    Abstract: A memory array comprising nanoscale wires is disclosed. The nanoscale wires are addressed by means of controllable regions axially and/or radially distributed along the nanoscale wires. In a one-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires and microscale wires. In a two-dimensional embodiment, memory locations are defined by crossing points between perpendicular nanoscale wires. In a three-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires located in different vertical layers.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: November 8, 2005
    Assignees: California Institute of Technology, President and Fellows of Harvard College, Brown University, SRI International
    Inventors: André DeHon, Charles M. Lieber, Patrick D. Lincoln, John E. Savage
  • Patent number: 6900479
    Abstract: A method for controlling electric conduction on nanoscale wires is disclosed. The nanoscale wires are provided with controllable regions axially and/or radially distributed. Controlling those regions by means of microscale wires or additional nanoscale wires allows or prevents electric conduction on the controlled nanoscale wires. The controllable regions are of two different types. For example, a first type of controllable region can exhibit a different doping from a second type of controllable region. The method allows one or more of a set of nanoscale wires, packed at sublithographic pitch, to be independently selected.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: May 31, 2005
    Assignees: California Institute of Technology, Brown University, President and Fellows of Harvard College, SRI International
    Inventors: André DeHon, Charles M. Lieber, Patrick D. Lincoln, John E. Savage
  • Publication number: 20040213307
    Abstract: This invention generally relates to nanotechnology and nanoelectronics as well as associated methods and devices. In particular, the invention relates to nanoscale optical components such as electroluminescence devices (e.g., LEDs), amplified stimulated emission devices (e.g., lasers), waveguides, and optical cavities (e.g., resonators). Articles and devices of a size greater than the nanoscale are also included. Such devices can be formed from nanoscale wires such as nanowires or nanotubes. In some cases, the nanoscale wire is a single crystal. In one embodiment, the nanoscale laser is constructed as a Fabry-Perot cavity, and is driven by electrical injection. Any electrical injection source may be used. For example, electrical injection may be accomplished through a crossed wire configuration, an electrode or distributed electrode configuration, or a core/shell configuration. The output wavelength can be controlled, for example, by varying the types of materials used to fabricate the device.
    Type: Application
    Filed: December 11, 2003
    Publication date: October 28, 2004
    Applicant: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yu Huang, Ritesh Agarwal
  • Publication number: 20040188721
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 30, 2004
    Applicant: President and Fellows of Harvard University
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Patent number: 6781166
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: August 24, 2004
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Publication number: 20040113138
    Abstract: A method for controlling electric conduction on nanoscale wires is disclosed. The nanoscale wires are provided with controllable regions axially and/or radially distributed. Controlling those regions by means of microscale wires or additional nanoscale wires allows or prevents electric conduction on the controlled nanoscale wires. The controllable regions are of two different types. For example, a first type of controllable region can exhibit a different doping from a second type of controllable region. The method allows one or more of a set of nanoscale wires, packed at sublithographic pitch, to be independently selected.
    Type: Application
    Filed: July 24, 2003
    Publication date: June 17, 2004
    Inventors: Andre DeHon, Charles M. Lieber, Patrick D. Lincoln, John E. Savage
  • Publication number: 20040113139
    Abstract: A memory array comprising nanoscale wires is disclosed. The nanoscale wires are addressed by means of controllable regions axially and/or radially distributed along the nanoscale wires. In a one-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires and microscale wires. In a two-dimensional embodiment, memory locations are defined by crossing points between perpendicular nanoscale wires. In a three-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires located in different vertical layers.
    Type: Application
    Filed: July 24, 2003
    Publication date: June 17, 2004
    Inventors: Andre DeHon, Charles M. Lieber, Patrick D. Lincoln, John E. Savage
  • Patent number: 6743408
    Abstract: A method of producing carbon single wall nanotubes (SWNT) by CVD is disclosed. The SWNTs are grown on a metal-catalyzed support surface, such as a commercially available silicon tips for atomic force microscopes (AFM). The growth characteristics of the SWNTs can be controlled by adjusting the density of the catalyst and the CVD growth conditions. The length of the SWNTs can be adjusted through pulsed electrical etching. Nanotubes of this type can find applications in nanotubes structures with defined patterns and for nano-tweezers. Nano-tweezers may be useful for manipulating matter, such as biological material, on a molecular level.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: June 1, 2004
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Jason H. Hafner, Chin Li Cheung, Philip Kim
  • Patent number: 6716409
    Abstract: A method of fabricating SWNT probes for use in atomic force microscopy is disclosed. In one embodiment, the SWNT's are fabricated using a metallic salt solution. In another embodiment, the SWNT's are fabricated using metallic colloids.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: April 6, 2004
    Assignee: President and Fellows of the Harvard College
    Inventors: Jason H. Hafner, Chin Li Cheung, Charles M. Lieber
  • Publication number: 20030200521
    Abstract: An architecture for nanoscale electronics is disclosed. The architecture comprises arrays of crossed nanoscale wires having selectively programmable crosspoints. Nanoscale wires of one array are shared by other arrays, thus providing signal propagation between the arrays. Nanoscale signal restoration elements are also provided, allowing an output of a first array to be used as an input to a second array. Signal restoration occurs without routing of the signal to non-nanoscale wires.
    Type: Application
    Filed: January 17, 2003
    Publication date: October 23, 2003
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Andre DeHon, Charles M. Lieber
  • Publication number: 20030089899
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: July 16, 2002
    Publication date: May 15, 2003
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong