Patents by Inventor Charles O. NOBLE

Charles O. NOBLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348447
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Application
    Filed: December 13, 2022
    Publication date: November 2, 2023
    Applicant: Akagera Medicines, Inc.
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Publication number: 20230219941
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Application
    Filed: June 18, 2021
    Publication date: July 13, 2023
    Applicant: Akagera Medicines, Inc.
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Publication number: 20230126415
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Application
    Filed: December 1, 2022
    Publication date: April 27, 2023
    Applicant: Akagera Medicines, Inc.
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Patent number: 11583544
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: February 21, 2023
    Assignee: CELATOR PHARMACEUTICALS, INC.
    Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka
  • Patent number: 11566023
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: January 31, 2023
    Assignee: Akagera Medicines, Inc.
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Patent number: 11555033
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: January 17, 2023
    Assignee: Akagera Medicines, Inc.
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Publication number: 20220274975
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Application
    Filed: May 6, 2022
    Publication date: September 1, 2022
    Applicant: Akagera Medicines, Inc.
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Publication number: 20210403463
    Abstract: Compositions and methods for the treatment of tuberculosis, as well as other mycobacterial and gram positive bacterial infections are disclosed. These compositions contain a highly potent and selective oxazolidinone encapsulated with high efficiency to maximize dosing potential of low toxicity drugs, and are stable in the presence of plasma. The compositions are long circulating and retain their encapsulated drug while in the circulation following intravenous dosing to allow for efficient accumulation at the site of the bacterial or mycobacterial infection. The high doses that can be achieved when combined with the long circulating properties and highly stable retention of the drug allow for a reduced frequency of administration when compared to daily or twice daily administrations of other drugs typically utilized to treat these infections.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 30, 2021
    Inventors: Daryl C. Drummond, Suresh K. Tipparaju, Charles O. Noble, Alexander Koshkaryev, Dmitri B. Kirpotin
  • Publication number: 20210008091
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: December 24, 2019
    Publication date: January 14, 2021
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA
  • Patent number: 10722467
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 28, 2020
    Assignee: ZONEONE PHARMA, INC.
    Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
  • Patent number: 10507182
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: December 17, 2019
    Assignee: ZONEONE PHARMA, INC.
    Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
  • Publication number: 20190314282
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: June 27, 2019
    Publication date: October 17, 2019
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20190110991
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: September 10, 2018
    Publication date: April 18, 2019
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20190105339
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: May 4, 2018
    Publication date: April 11, 2019
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA
  • Patent number: 10004759
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL). In the preferred embodiment the drug in the solubilizing agent is mixed with the liposomes in aqueous suspension so that the concentration of solubilizing agent is lowered to below its capacity to completely solubilize the drug. This results in the drug precipitating but remote loading is capability retained.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: June 26, 2018
    Assignee: ZONEONE PHARMA, INC.
    Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
  • Publication number: 20170239182
    Abstract: The present invention provides liposomes loaded with chelating agents, pharmaceutical formulations including these liposomes and methods of making chelating agent liposomes. Because the chelating agents are loaded in the liposome with high efficiencies, the liposomes are of use in treatment of metal ion overload in subjects. The liposomes can also contain essential trace metals to compensate for the off target effect of removal of endogenous non-target trace metals by administration of the chelator. The liposomes can include two or more different chelating agents of different structures and affinities for metal ions.
    Type: Application
    Filed: August 12, 2015
    Publication date: August 24, 2017
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Patent number: 9737485
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 22, 2017
    Assignee: ZONEONE PHARMA, INC.
    Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
  • Publication number: 20170231910
    Abstract: The present invention provides liposomes loaded with chelating agents, pharmaceutical formulations including these liposomes and methods of making chelating agent liposomes. Because the chelating agents are loaded in the liposome with high efficiencies, the liposomes are of use in treatment of metal ion overload in subjects. The liposomes can also contain essential trace metals to compensate for the off target effect of removal of endogenous non-target trace metals by administration of the chelator. The liposomes can include two or more different chelating agents of different structures and affinities for metal ions.
    Type: Application
    Filed: August 12, 2015
    Publication date: August 17, 2017
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20170224715
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL). In the preferred embodiment the drug in the solubilizing agent is mixed with the liposomes in aqueous suspension so that the concentration of solubilizing agent is lowered to below its capacity to completely solubilize the drug. This results in the drug precipitating but remote loading is capability retained.
    Type: Application
    Filed: August 4, 2015
    Publication date: August 10, 2017
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA
  • Publication number: 20170202776
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: February 9, 2017
    Publication date: July 20, 2017
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.