Patents by Inventor Charles O. NOBLE

Charles O. NOBLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170128366
    Abstract: The present invention provides liposomes loaded with chelating agents, pharmaceutical formulations including these liposomes and methods of making chelating agent liposomes. Because the chelating agents are loaded in the liposome with high efficiencies, the liposomes are of use in treatment of metal ion overload in subjects. The liposomes can include two or more different chelating agents of different structures and affinities for metal ions.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20160324780
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20140271825
    Abstract: The present invention provides liposomes loaded with chelating agents, pharmaceutical formulations including these liposomes and methods of making chelating agent liposomes. Because the chelating agents are loaded in the liposome with high efficiencies, the liposomes are of use in treatment of metal ion overload in subjects. The liposomes can include two or more different chelating agents of different structures and affinities for metal ions.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20140220110
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
  • Publication number: 20140220112
    Abstract: Sparingly water-soluble agents can be formulated as cyclodextrin complexes, however, these water-soluble drug-cyclodextrin complexes dissociate when the complex is administered into patients. The dilution of the complex in the patient leads to the drug being released from the complex, so the drug is not effectively targeted. In contrast, drugs encapsulated in the aqueous core of a lipid vesicles are not released when the liposome is diluted in blood. This invention describes compositions and methods whereby cyclodextrin or polyanionic beta-cyclodextrin drug-complexes are mixed with a preformed liposome containing the amine salts of an acidic compound. This results in the drug cyclodextrin complex being transferred into the liposome where it is stably retained. The liposome-encapsulated drug can then be injected into a patient.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Inventors: Francis C. SZOKA, JR., Charles O. Noble, Mark E. Hayes
  • Publication number: 20140220111
    Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.