Patents by Inventor Charles T. Black

Charles T. Black has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150175761
    Abstract: Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 25, 2015
    Inventors: Chang-Yong Nam, Jovan Kamcev, Charles T. Black, Robert Grubbs
  • Publication number: 20150122639
    Abstract: A chemically passivated photoelectrode, having a conductive substrate, a layer of conductive oxide, preferably zinc oxide (ZnO), over the conductive substrate, and an ultrathin layer of a chemically inert semiconductor material coating the conductive oxide layer, is disclosed. The ultrathin layer of chemically inert semiconductor material, which may be less than 5 nm thick, increases the efficiency of water splitting through passivation of surface charge traps and chemical stability in harsh environments, as opposed to being photoactive. A method of manufacture and a solar cell having the photoelectrode are also disclosed.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventors: Mingzhao Liu, Chang-Yong Nam, Charles T. Black
  • Patent number: 8987138
    Abstract: A method of making a nanoparticle array that includes replicating a dimension of a self-assembled film into a dielectric film, to form a porous dielectric film, conformally depositing a material over the said porous dielectric film, and anisotropically and selectively etching the deposited material.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Kathryn Wilder Guarini
  • Patent number: 8802047
    Abstract: One-dimensional materials are prepared from an array of nanoparticles positioned in one or more recesses of a substrate, wherein the recesses and the positioned nanoparticles have a comparable diameter of the same order of magnitude such that one nanoparticle is positioned within each of the one or more recesses; wherein a depth of the one or more recesses is from 10 nm to 40 nm; and wherein a diameter of the one or more recesses is adjusted by conformal film deposition and is between one and two times the mean diameter of the nanoparticles, and wherein the nanoparticles have a mean diameter of from 1 nm to 50 nm, and wherein the nanoparticles are catalytic sites for the growth of the one-dimensional materials; wherein the one dimensional materials are non-aggregated and extend in a direction that is perpendicular or approximately perpendicular to the horizontal surface of the substrate.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20140216539
    Abstract: Structures useful for forming contacts to materials having low charge carrier mobility are described. Methods for their formation and use are also described. These structures include interdigitated electrodes capable of making electrical contact to semiconducting materials having low electron and/or whole mobility. In particular, these structures are useful for organic semiconducting devices made with conducting polymers and small molecules. They are also useful for semiconducting devices made with nanocrystalline semiconductors.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 7, 2014
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Danvers E. Johnston, Jonathan E. Allen, Charles T. Black, Chang-Yong Nam
  • Publication number: 20140096483
    Abstract: A transfer chamber is disclosed having a first plate with a first surface configured to receive a sample and a second surface containing a groove. The second surface of the first plate surrounds the first surface of the first plate. A second plate has a first surface and a second surface containing a groove. A sealing component is disposed in the groove of the first plate or the second plate. A pivotable link couples the first plate and the second plate. The pivotable link is configured to hold the first plate, the second plate, and the sealing component together to substantially create an air-tight seal between the first surface of the first plate and the second surface of the second plate. The pivotable link is configured to open the seal in response to a pressure differential across the transfer chamber.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 10, 2014
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Danvers E. Johnston, Jonathan E. Allen, Edward Baker, Charles T. Black, Chang-Yong Nam
  • Patent number: 8513769
    Abstract: Electrical fuses and resistors having a sublithographic lateral or vertical dimension are provided. A conductive structure comprising a conductor or a semiconductor is formed on a semiconductor substrate. At least one insulator layer is formed on the conductive structure. A recessed area is formed in the at least one insulator layer. Self-assembling block copolymers are applied into the recessed area and annealed to form a fist set of polymer blocks and a second set of polymer blocks. The first set of polymer blocks are etched selective to the second set and the at least one insulator layer. Features having sublithographic dimensions are formed in the at least one insulator layer and/or the conductive structure. Various semiconductor structures having sublithographic dimensions are formed including electrical fuses and resistors.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Matthew E. Colburn, Timothy J. Dalton, Daniel C. Edelstein, Wai-Kin Li, Anthony K. Stamper, Haining S. Yang
  • Patent number: 8486512
    Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl J. Radens
  • Patent number: 8486511
    Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl J. Radens
  • Patent number: 8465829
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 18, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20130011612
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Patent number: 8323608
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: December 4, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Patent number: 8273665
    Abstract: A method of making a nanoparticle array that includes replicating a dimension of a self-assembled film into a dielectric film, to form a porous dielectric film, conformally depositing a material over said porous dielectric film, and anisotropically and selectively etching said deposited material.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Kathryn Wilder Guarini
  • Patent number: 8247292
    Abstract: A method of making a uniform nanoparticle array, including performing diblock copolymer thin film self assembly over a first dielectric on silicon, creating a porous polymer film, transferring a pattern into the first dielectric, selectively growing epitaxial silicon off a silicon substrate from within pores to create a silicon nanoparticle array.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Kathryn Wilder Guarini
  • Publication number: 20120183742
    Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl J. Radens
  • Publication number: 20120183736
    Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl Radens
  • Patent number: 8215074
    Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl Radens
  • Publication number: 20120148474
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20120138571
    Abstract: In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ? of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.
    Type: Application
    Filed: February 5, 2008
    Publication date: June 7, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Timothy J. Dalton, Bruce B. Doris, Carl Radens
  • Patent number: 8187565
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: May 29, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom