Patents by Inventor Charles Tabor

Charles Tabor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10016274
    Abstract: A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: July 10, 2018
    Assignee: Medtronic, Inc.
    Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Ann L. Brody Rubin, Michael J. Tuchek
  • Publication number: 20180144826
    Abstract: Systems for the simulation of percutaneous medical procedures are disclosed. The systems can include a simulated vasculature including a first component configured to allow for introduction of a medical device into the system through an introductory port, a second component connected to the first component and shaped to simulate a portion of a human vasculature, and a third component connected to the second component and shaped to simulate a delivery site for the medical procedure. The system can be configured to allow for a medical device to be delivered to the third component by passing through the introductory port of the first component and passing through the second component. The system can be configured to replicate simulated conditions of use for the medical procedure. Methods for simulating a percutaneous medical procedure using a simulated vasculature are also disclosed.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Applicant: MEDTRONIC, INC.
    Inventors: DEAN CHRISTIANSEN, JOSEPH MORROW, CHARLES TABOR
  • Patent number: 9965591
    Abstract: Systems (10) for the simulation of percutaneous medical procedures are disclosed. The systems can include a simulated vasculature including a first component (24) configured to allow for introduction of a medical device into the system through an introductory port, a second component (14) connected to the first component and shaped to simulate a portion of a human vasculature, and a third component (18) connected to the second component and shaped to simulate a delivery site for the medical procedure. The system can be configured to allow for a medical device to be delivered to the third component by passing through the introductory port of the first component and passing through the second component. The system can be configured to replicate simulated conditions of use for the medical procedure. Methods for simulating a percutaneous medical procedure using a simulated vasculature are also disclosed.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 8, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Dean Christiansen, Joseph Morrow, Charles Tabor
  • Patent number: 9925079
    Abstract: A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system including an elongated body having a proximal end and a distal end, a driver mechanism positioned at the proximal end of the elongated body, an elongated threaded rod located axially distal to the driver mechanism, and a sheath including an elongated tubular portion having a hollow interior portion with a first diameter that is sized for compression and retention of the implantable stented device in a compressed configuration for delivery to a body lumen.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: March 27, 2018
    Assignee: Medtronic, Inc.
    Inventors: Charles Tabor, Timothy R. Ryan
  • Publication number: 20170079779
    Abstract: Embodiments of the present invention provide prosthetic valves having sealing members on the external surface thereof. The prosthetic heart valves of the present invention are preferably delivered by catheter directly through the apex of the heart or by other close range transcatheter delivery methods. Because these methods of implantation require a shorter length of catheter, a prosthetic valve can be more accurately oriented in the desired implantation location. Fluoroscopy can be used to further assist in orientation of the valve. The sealing members of the present invention can be positioned on the prosthetic valve such that, when the prosthetic valve is implanted in a native annulus, each provided sealing member is located adjacent to a commissural point of the native valve leaflets. Because the sealing members are precisely oriented on the prosthetic valve, a physician can ensure that the sealing members are aligned with the commissural points of the native valve leaflets.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventor: Charles Tabor
  • Patent number: 9545306
    Abstract: Embodiments of the present invention provide prosthetic valves having sealing members on the external surface thereof. The prosthetic heart valves of the present invention are preferably delivered by catheter directly through the apex of the heart or by other close range transcatheter delivery methods. Because these methods of implantation require a shorter length of catheter, a prosthetic valve can be more accurately oriented in the desired implantation location. Fluoroscopy can be used to further assist in orientation of the valve. The sealing members of the present invention can be positioned on the prosthetic valve such that, when the prosthetic valve is implanted in a native annulus, each provided sealing member is located adjacent to a commissural point of the native valve leaflets. Because the sealing members are precisely oriented on the prosthetic valve, a physician can ensure that the sealing members are aligned with the commissural points of the native valve leaflets.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 17, 2017
    Assignee: Medtronic, Inc.
    Inventor: Charles Tabor
  • Publication number: 20160361184
    Abstract: A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system including an elongated body having a proximal end and a distal end, a driver mechanism positioned at the proximal end of the elongated body, an elongated threaded rod located axially distal to the driver mechanism, and a sheath including an elongated tubular portion having a hollow interior portion with a first diameter that is sized for compression and retention of the implantable stented device in a compressed configuration for delivery to a body lumen.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 15, 2016
    Inventors: Charles Tabor, Timothy R. Ryan
  • Publication number: 20160296327
    Abstract: A stented valve including a stent structure including a generally tubular body portion having a first end, a second end, an interior area, a longitudinal axis, and a plurality of vertical wires extending generally parallel to the longitudinal axis around a periphery of the body portion, wherein the plurality of vertical wires includes multiple commissure wires and at least one structural wire positioned between adjacent commissure wires, and a plurality of V-shaped wire structures having a first end, a second end, and a peak between the first and second ends, wherein a first end of each V-shaped structure extends from a first vertical wire and a second end of each V-shaped structure extends from a second vertical wire that is adjacent to the first vertical wire, wherein each V-shaped structure is oriented so that its peak is facing in the same direction relative to the first and second ends of the body portion, and a valve structure including a plurality of leaflets attached to the stent structure within the
    Type: Application
    Filed: April 14, 2016
    Publication date: October 13, 2016
    Inventors: Carol E. Eberhardt, Charles Tabor, Carolyn Majkrzak, Timothy R. Ryan, Melissa R. Young, Maria Awad, Janice L. Shay
  • Publication number: 20160296328
    Abstract: A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 13, 2016
    Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Ann L. Brody Rubin, Michael J. Tuchek
  • Patent number: 9393115
    Abstract: A delivery system for delivering an implantable stented device to a lumen of a patient, the delivery system including an elongated body having a proximal end and a distal end, a driver mechanism positioned at the proximal end of the elongated body, an elongated threaded rod located axially distal to the driver mechanism, and a sheath including an elongated tubular portion having a hollow interior portion with a first diameter that is sized for compression and retention of the implantable stented device in a compressed configuration for delivery to a body lumen.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: July 19, 2016
    Assignee: Medtronic, Inc.
    Inventors: Charles Tabor, Timothy R. Ryan
  • Patent number: 9339382
    Abstract: A stented valve prosthesis for implantation within a native mitral valve having a generally tubular expandable stent structure having a first end, a second end, a central body portion having one or more openings, and a longitudinal axis. A wing portion extends outwardly from the stent structure and away from the longitudinal axis of the stent structure in an expanded deployed configuration. A radius of the wing portion is greater than a radius of the central body portion in the expanded deployed configuration, and the wing portion fits within one of the openings in the central body portion of the stent structure in a crimped delivery configuration. A valve structure having a plurality of leaflets is attached to an interior of the stent structure.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: May 17, 2016
    Assignee: Medtronic, Inc.
    Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, J. Michael Tuchek
  • Patent number: 9333100
    Abstract: A stented valve including a stent structure including a generally tubular body portion having a first end, a second end, an interior area, a longitudinal axis, and a plurality of vertical wires extending generally parallel to the longitudinal axis around a periphery of the body portion, wherein the plurality of vertical wires includes multiple commissure wires and at least one structural wire positioned between adjacent commissure wires, and a plurality of V-shaped wire structures having a first end, a second end, and a peak between the first and second ends, wherein a first end of each V-shaped structure extends from a first vertical wire and a second end of each V-shaped structure extends from a second vertical wire that is adjacent to the first vertical wire, wherein each V-shaped structure is oriented so that its peak is facing in the same direction relative to the first and second ends of the body portion, and a valve structure including a plurality of leaflets attached to the stent structure within the
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 10, 2016
    Assignee: Medtronic, Inc.
    Inventors: Carol E. Eberhardt, Charles Tabor, Carolyn Majkrzak, Timothy R. Ryan, Melissa Young, Maria Awad, Janice L. Shay
  • Patent number: 9173738
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached includes a shaft assembly including a distal end, an intermediate portion, and a first coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve via a first tether. A sheath assembly defines a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The first coupling structure is configured to be manipulated in a first direction to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: November 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Robert J. Murray, III, Charles Tabor, Andrew Crisman, Adam Shipley
  • Patent number: 9149358
    Abstract: A delivery system for delivery of an implantable stented device to a body lumen, the device having a plurality of structures at its proximal end, wherein the delivery system comprises a first body portion removably attached to a second body portion and wherein the second body portion includes a plurality of attachment components at its distal end for attachment to the plurality of structures at the proximal end of the device.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: Charles Tabor, Paul Rothstein, Eliot Bloom
  • Patent number: 9089422
    Abstract: A replacement prosthetic heart valve for engagement with a structure of an original prosthetic heart valve that includes at least one visually detectable marker. The replacement heart valve includes a stent structure having a generally tubular body portion and at least one visually detectable marker on a portion of the stent structure, and at least two leaflets attached within the interior area of the tubular body portion of the stent structure. At least one visually detectable marker of the stent structure is alignable with at least one visually detectable marker of the original prosthetic heart valve.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: July 28, 2015
    Assignee: Medtronic, Inc.
    Inventors: Timothy R. Ryan, Charles Tabor
  • Patent number: 9056002
    Abstract: In a method of accessing and closing a vessel, a vessel is percutaneously accessed through a first opening in the vessel wall at a first location. A stent-graft is delivered through the first opening to a second location. The stent-graft is deployed at the second location. The vessel is then accessed through a second opening through the vessel wall at the second location, wherein the second opening is generally aligned with a fenestration through the graft material of the stent-graft. A delivery device is advanced through the second opening, the fenestration, and the stent-graft lumen to a third location spaced from the first location and the second location. After the delivery device is retracted through the lumen of the stent-graft and out of the fenestration and the second opening, the stent graft is rotated or translated such that the fenestration is not aligned with the second opening.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: June 16, 2015
    Assignee: Medtronic, Inc.
    Inventor: Charles Tabor
  • Publication number: 20150161347
    Abstract: Systems (10) for the simulation of percutaneous medical procedures are disclosed. The systems can include a simulated vasculature including a first component (24) configured to allow for introduction of a medical device into the system through an introductory port, a second component (14) connected to the first component and shaped to simulate a portion of a human vasculature, and a third component (18) connected to the second component and shaped to simulate a delivery site for the medical procedure. The system can be configured to allow for a medical device to be delivered to the third component by passing through the introductory port of the first component and passing through the second component. The system can be configured to replicate simulated conditions of use for the medical procedure. Methods for simulating a percutaneous medical procedure using a simulated vasculature are also disclosed.
    Type: Application
    Filed: September 13, 2012
    Publication date: June 11, 2015
    Inventors: Dean Christiansen, Joseph Morrow, Charles Tabor
  • Publication number: 20140172075
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached includes a shaft assembly including a distal end, an intermediate portion, and a first coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve via a first tether. A sheath assembly defines a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The first coupling structure is configured to be manipulated in a first direction to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 19, 2014
    Applicant: Medtronic, Inc.
    Inventors: Robert J. Murray, III, Charles Tabor, Andrew Crisman, Adam Shipley
  • Patent number: 8753269
    Abstract: A surgical access device including a lower portion having a central opening spaced from a lower portion outer wall, an upper portion adjacent to the lower portion and having a central opening spaced from an upper portion outer wall, and at least one flange portion extending outwardly from the upper and lower portions. The device can further include a gap extending from the central openings of the lower and upper portions and through their outer walls.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: June 17, 2014
    Assignee: Medtronic, Inc.
    Inventor: Charles Tabor
  • Publication number: 20140142694
    Abstract: A stented valve prosthesis for implantation within a native mitral valve having a generally tubular expandable stent structure having a first end, a second end, a central body portion having one or more openings, and a longitudinal axis. A wing portion extends outwardly from the stent structure and away from the longitudinal axis of the stent structure in an expanded deployed configuration. A radius of the wing portion is greater than a radius of the central body portion in the expanded deployed configuration, and the wing portion fits within one of the openings in the central body portion of the stent structure in a crimped delivery configuration. A valve structure having a plurality of leaflets is attached to an interior of the stent structure.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc.
    Inventors: Charles TABOR, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, J. Michael Tuchek