Patents by Inventor Charles William Koburger, III

Charles William Koburger, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100273298
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of elongated parallel catalyst strips on a horizontal surface, and growing carbon nanotubes from the catalyst in the presence of a directional flow of reactant gases.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell
  • Patent number: 7820502
    Abstract: A method for forming carbon nanotube field effect transistors, arrays of carbon nanotube field effect transistors, and device structures and arrays of device structures formed by the methods. The methods include forming a stacked structure including a gate electrode layer and catalyst pads each coupled electrically with a source/drain contact. The gate electrode layer is divided into multiple gate electrodes and at least one semiconducting carbon nanotube is synthesized by a chemical vapor deposition process on each of the catalyst pads. The completed device structure includes a gate electrode with a sidewall covered by a gate dielectric and at least one semiconducting carbon nanotube adjacent to the sidewall of the gate electrode. Source/drain contacts are electrically coupled with opposite ends of the semiconducting carbon nanotube to complete the device structure. Multiple device structures may be configured either as a memory circuit or as a logic circuit.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaolav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7791145
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises a shaped-modified isolation region that is formed in a trench generally between two doped wells of the substrate in which the bulk CMOS devices are fabricated. The shaped-modified isolation region may comprise a widened dielectric-filled portion of the trench, which may optionally include a nearby damage region, or a narrowed dielectric-filled portion of the trench that partitions a damage region between the two doped wells. Latch-up may also be suppressed by providing a lattice-mismatched layer between the trench base and the dielectric filler in the trench.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Robert J. Gauthier, Jr., David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7786583
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H Mitchell
  • Patent number: 7750406
    Abstract: Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7737504
    Abstract: A well isolation trenches for a CMOS device and the method for forming the same. The CMOS device includes (a) a semiconductor substrate, (b) a P well and an N well in the semiconductor substrate, (c) a well isolation region sandwiched between and in direct physical contact with the P well and the N well. The P well comprises a first shallow trench isolation (STI) region, and the N well comprises a second STI region. A bottom surface of the well isolation region is at a lower level than bottom surfaces of the first and second STI regions. When going from top to bottom of the well isolation region, an area of a horizontal cross section of the well isolation region is an essentially continuous function.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7727848
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7704855
    Abstract: A silicon-on-insulator (SOI) device and structure having locally strained regions in the silicon active layer formed by increasing the thickness of underlying regions of a buried insulating layer separating the silicon active layer from the substrate. The stress transferred from the underlying thickened regions of the insulating layer to the overlying strained regions increases carrier mobility in these confined regions of the active layer. Devices formed in and on the silicon active layer may benefit from the increased carrier mobility in the spaced-apart strained regions.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Charles William Koburger, III, James Albert Slinkman
  • Patent number: 7699996
    Abstract: A method for simultaneously forming multiple line-widths, one of which is less than that achievable employing conventional lithographic techniques. The method includes providing a structure which includes a memory layer and a sidewall image transfer (SIT) layer on top of the memory layer. Then, the SIT layer is patterned resulting in a SIT region. Then, the SIT region is used as a blocking mask during directional etching of the memory layer resulting in a first memory region. Then, a side wall of the SIT region is retreated a retreating distance D in a reference direction resulting in a SIT portion. Said patterning comprises a lithographic process. The retreating distance D is less than a critical dimension CD associated with the lithographic process. The SIT region includes a first dimension W2 and a second dimension W3 in the reference direction, wherein CD<W2<2D<W3.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, John G. Gaudiello, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7691720
    Abstract: Vertical device structures incorporating at least one nanotube and methods for fabricating such device structures by chemical vapor deposition. Each nanotube is grown by chemical vapor deposition catalyzed by a catalyst pad and encased in a coating of a dielectric material. Vertical field effect transistors may be fashioned by forming a gate electrode about the encased nanotubes such that the encased nanotubes extend vertically through the thickness of the gate electrode. Capacitors may be fashioned in which the encased nanotubes and the corresponding catalyst pad bearing the encased nanotubes forms one capacitor plate.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7674674
    Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: March 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H. Mitchell
  • Patent number: 7668004
    Abstract: Non-volatile and radiation-hard switching and memory devices using vertical nano-tubes and reversibly held in state by van der Waals' forces and methods of fabricating the devices. Means for sensing the state of the devices include measuring capacitance, and tunneling and field emission currents.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7655985
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7651902
    Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7648869
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The structure comprises a first doped well formed in a substrate of semiconductor material, a second doped well formed in the substrate proximate to the first doped well, and a deep trench defined in the substrate. The deep trench includes sidewalls positioned between the first and second doped wells. A buried conductive region is defined in the semiconductor material bordering the base and the sidewalls of the deep trench. The buried conductive region intersects the first and second doped wells. The buried conductive region has a higher dopant concentration than the first and second doped wells. The buried conductive region may be formed by solid phase diffusion from a mobile dopant-containing material placed in the deep trench. After the buried conductive region is formed, the mobile dopant-containing material may optionally remain in the deep trench.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: January 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Shunhua Thomas Chang, Toshiharu Furukawa, Robert J. Gauthier, Jr., David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7645676
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises a shaped-modified isolation region that is formed in a trench generally between two doped wells of the substrate in which the bulk CMOS devices are fabricated. The shaped-modified isolation region may comprise a widened dielectric-filled portion of the trench, which may optionally include a nearby damage region, or a narrowed dielectric-filled portion of the trench that partitions a damage region between the two doped wells. Latch-up may also be suppressed by providing a lattice-mismatched layer between the trench base and the dielectric filler in the trench.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Robert J. Gauthier, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7629192
    Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to the nanotubes.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 8, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Leah Marie Pfeifer Pastel
  • Patent number: 7607455
    Abstract: Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: October 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7579272
    Abstract: Methods of forming low-k dielectric layers for use in the manufacture of semiconductor devices and fabricating semiconductor structures using the low-k dielectric material. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7566613
    Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H. Mitchell