Patents by Inventor Charles William Koburger

Charles William Koburger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7560347
    Abstract: A field effect transistor is formed having wrap-around, vertically-aligned, dual gate electrodes. Starting with a silicon-on-insulator (SOI) structure having a buried silicon island, a vertical reference edge is defined, by creating a cavity within the SOI structure, and used during two etch-back steps that can be reliably performed. The first etch-back removes a portion of an oxide layer for a first distance over which a gate conductor material is then applied. The second etch-back removes a portion of the gate conductor material for a second distance. The difference between the first and second distances defines the gate length of the eventual device. After stripping away the oxide layers, a vertical gate electrode is revealed that surrounds the buried silicon island on all four side surfaces.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell
  • Patent number: 7525156
    Abstract: To isolate two active regions formed on a silicon-on-insulator (SOI) substrate, a shallow trench isolation region is filled with liquid phase deposited silicon dioxide (LPD-SiO2) while avoiding covering the active areas with the oxide. By selectively depositing the oxide in this manner, the polishing needed to planarize the wafer is significantly reduced as compared to a chemical-vapor deposited oxide layer that covers the entire wafer surface. Additionally, the LPD-SiO2 does not include the growth seams that CVD silicon dioxide does. Accordingly, the etch rate of the LPD-SiO2 is uniform across its entire expanse thereby preventing cavities and other etching irregularities present in prior art shallow trench isolation regions in which the etch rate of growth seams exceeds that of the other oxide areas.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7517716
    Abstract: A method for forming an optical sensor. First, a structure which comprises a semiconductor substrate is provided. Then, a first electrode and a fourth electrode are formed at a first depth in the semiconductor substrate. Then, a second electrode and a fifth electrode are formed at a second depth in the semiconductor substrate. Then, a third electrode and a sixth electrode are formed at a third depth in the semiconductor substrate. The first depth is greater than the second depth which is greater than the third depth. First, second, and third semiconducting regions of the semiconductor substrate are disposed between and in direct physical contact with the first and fourth electrodes, the second and fifth electrodes, and the third and sixth electrodes, respectively. The first, second, and third semi-conducting regions are in direct physical contact with one another.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Steven J. Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7505110
    Abstract: Methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps that are fabricated include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7492046
    Abstract: A fuse structure and a method for operating the same. The fuse structure operating method includes providing a structure. The structure includes (a) an electrically conductive layer and (b) N electrically conductive regions hanging over without touching the electrically conductive layer. N is a positive integer and N is greater than 1. The N electrically conductive regions are electrically connected together. The structure operating method further includes causing a first electrically conductive region of the N electrically conductive regions to touch the electrically conductive layer without causing the remaining N?1 electrically conductive regions to touch the electrically conductive layer.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7491618
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20090035708
    Abstract: A structure and a method for forming the same. The method includes providing a structure which includes (a) a to-be-patterned layer, (b) a photoresist layer on top of the to-be-patterned layer wherein the photoresist layer includes a first opening, and (c) a cap region on side walls of the first opening. A first top surface of the to-be-patterned layer is exposed to a surrounding ambient through the first opening. The method further includes performing a first lithography process resulting in a second opening in the photoresist layer. The second opening is different from the first opening. A second top surface of the to-be-patterned layer is exposed to a surrounding ambient through the second opening.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7483285
    Abstract: Structures for memory devices. The structure includes (a) a substrate; (b) a first and second electrode regions on the substrate; and (c) a third electrode region disposed between the first and second electrode regions. In response to a first write voltage potential applied between the first and third electrode regions, the third electrode region changes its own shape, such that in response to a pre-specified read voltage potential subsequently applied between the first and third electrode regions, a sensing current flows between the first and third electrode regions. In addition, in response to a second write voltage potential being applied between the second and third electrode regions, the third electrode region changes its own shape such that in response to the pre-specified read voltage potential applied between the first and third electrode regions, said sensing current does not flow between the first and third electrode regions.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7473633
    Abstract: Conductive paths in an integrated circuit are formed using multiple undifferentiated carbon nanotubes embedded in a conductive metal, which is preferably copper. Preferably, conductive paths include vias running between conductive layers. Preferably, composite vias are formed by forming a metal catalyst pad on a conductor at the via site, depositing and etching a dielectric layer to form a cavity, growing substantially parallel carbon nanotubes on the catalyst in the cavity, and filling the remaining voids in the cavity with copper. The next conductive layer is then formed over the via hole.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H Mitchell, Stanislav Polonsky
  • Publication number: 20090001337
    Abstract: A memory cell in an integrated circuit is fabricated in part by forming a lower electrode feature, an island, a sacrificial feature, a gate feature, and a phase change feature. The island is formed on the lower electrode feature and has one or more sidewalls. It comprises a lower doped feature, a middle doped feature formed above the lower doped feature, and an upper doped feature formed above the middle doped feature. The sacrificial feature is formed above the island, while the gate feature is formed along each sidewall of the island. The gate feature overlies at least a portion of the middle doped feature of the island and is operative to control an electrical resistance therein. Finally, the phase feature is formed above the island at least in part by replacing at least a portion of the sacrificial feature with a phase change material. The phase change material is operative to switch between lower and higher electrical resistance states in response to an application of an electrical signal.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Toshiharu Furukawa, John G. Gaudiello, Mark Charles Hakey, Steven J. Holmes, David V. Horak, Charles William Koburger, III, Chung Hon Lam
  • Publication number: 20080268610
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
    Type: Application
    Filed: July 9, 2008
    Publication date: October 30, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20080258181
    Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20080258222
    Abstract: Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
    Type: Application
    Filed: October 24, 2007
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20080261363
    Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.
    Type: Application
    Filed: June 23, 2008
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, Mark Eliot Masters, Peter H. Mitchell
  • Publication number: 20080258246
    Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to said nanotubes.
    Type: Application
    Filed: July 2, 2008
    Publication date: October 23, 2008
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Leah Marie Pfeifer Pastel
  • Patent number: 7439081
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger III, Peter H. Mitchell
  • Patent number: 7435653
    Abstract: A field effect transistor is formed having wrap-around, vertically-aligned, dual gate electrodes. Starting with a silicon-on-insulator (SOI) structure having a buried silicon island, a vertical reference edge is defined, by creating a cavity within the SOI structure, and used during two etch-back steps that can be reliably performed. The first etch-back removes a portion of an oxide layer for a first distance over which a gate conductor material is then applied. The second etch-back removes a portion of the gate conductor material for a second distance. The difference between the first and second distances defines the gate length of the eventual device. After stripping away the oxide layers, a vertical gate electrode is revealed that surrounds the buried silicon island on all four side surfaces.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: October 14, 2008
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell
  • Publication number: 20080245984
    Abstract: Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Application
    Filed: May 28, 2008
    Publication date: October 9, 2008
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger
  • Publication number: 20080242016
    Abstract: Semiconductor methods and device structures for suppressing latch-up in bulk CMOS devices. The method comprises forming a trench in the semiconductor material of the substrate with first sidewalls disposed between a pair of doped wells, also defined in the semiconductor material of the substrate. The method further comprises forming an etch mask in the trench to partially mask the base of the trench, followed by removing the semiconductor material of the substrate exposed across the partially masked base to define narrowed second sidewalls that deepen the trench. The deepened trench is filled with a dielectric material to define a trench isolation region for devices built in the doped wells. The dielectric material filling the deepened extension of the trench enhances latch-up suppression.
    Type: Application
    Filed: May 8, 2008
    Publication date: October 2, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, Jimmy Konstantinos Kontos, Jack Allan Mandelman, William Robert Tonti
  • Publication number: 20080227264
    Abstract: Vertical device structures incorporating at least one nanotube and methods for fabricating such device structures by chemical vapor deposition. Each nanotube is grown by chemical vapor deposition catalyzed by a catalyst pad and encased in a coating of a dielectric material. Vertical field effect transistors may be fashioned by forming a gate electrode about the encased nanotubes such that the encased nanotubes extend vertically through the thickness of the gate electrode. Capacitors may be fashioned in which the encased nanotubes and the corresponding catalyst pad bearing the encased nanotubes forms one capacitor plate.
    Type: Application
    Filed: October 29, 2007
    Publication date: September 18, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Peter H. Mitchell, Larry Alan Nesbit