Patents by Inventor Cheang-Whang Chang

Cheang-Whang Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10262911
    Abstract: A circuit for testing bond connections between a first die and a second die is described. The circuit comprises a defect monitoring circuit implemented on the first die, which is configured as a test die; and a plurality of bond connections between the first die and the second die; wherein the defect monitoring circuit is configured to detect a defect in a bond connection of the plurality of bond connections between the first die and the second die. A method of testing bond connections between a first die and a second die is also described.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 16, 2019
    Assignee: XILINX, INC.
    Inventors: Yuqing Gong, Henley Liu, Myongseob Kim, Suresh P. Parameswaran, Cheang-Whang Chang, Boon Y. Ang
  • Patent number: 10103139
    Abstract: An integrated circuit structure includes: a semiconductor substrate; a shallow trench isolation (STI) region in the semiconductor substrate; one or more active devices formed on the semiconductor substrate; and a resistor array having a plurality of resistors disposed above the STI region; wherein the resistor array comprises a portion of one or more interconnect contact layers that are for interconnection to the one or more active devices.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 16, 2018
    Assignee: XILINX, INC.
    Inventors: Nui Chong, Jae-Gyung Ahn, Ping-Chin Yeh, Cheang-Whang Chang
  • Patent number: 10096502
    Abstract: An example clamping assembly tray for packaging a semiconductor device includes a frame having a bottom surface and side walls extending from the bottom surface that define a cavity; and a compressible member disposed on the bottom surface of the frame within the cavity, where a top portion of the compressible member provides a support surface for supporting the semiconductor device, the support surface being between the bottom surface and a top edge of the side walls.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 9, 2018
    Assignee: XILINX, INC.
    Inventors: Gamal Refai-Ahmed, Suresh Ramalingam, Mohsen H. Mardi, Tien-Yu Lee, Ivor G. Barber, Cheang-Whang Chang, Jaspreet Singh Gandhi
  • Publication number: 20180144963
    Abstract: An example clamping assembly tray for packaging a semiconductor device includes a frame having a bottom surface and side walls extending from the bottom surface that define a cavity; and a compressible member disposed on the bottom surface of the frame within the cavity, where a top portion of the compressible member provides a support surface for supporting the semiconductor device, the support surface being between the bottom surface and a top edge of the side walls.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Applicant: Xilinx, Inc.
    Inventors: Gamal Refai-Ahmed, Suresh Ramalingam, Mohsen H. Mardi, Tien-Yu Lee, Ivor G. Barber, Cheang-Whang Chang, Jaspreet Singh Gandhi
  • Publication number: 20170012041
    Abstract: An integrated circuit structure includes: a semiconductor substrate; a shallow trench isolation (STI) region in the semiconductor substrate; one or more active devices formed on the semiconductor substrate; and a resistor array having a plurality of resistors disposed above the STI region; wherein the resistor array comprises a portion of one or more interconnect contact layers that are for interconnection to the one or more active devices.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 12, 2017
    Applicant: XILINX, INC.
    Inventors: Nui Chong, Jae-Gyung Ahn, Ping-Chin Yeh, Cheang-Whang Chang
  • Patent number: 9412674
    Abstract: An integrated circuit includes a die having a conductive layer. The conductive layer includes a data wire, a first power supply wire of a first voltage potential, and a second power supply wire of a second voltage potential different from the first voltage potential. A segment of the data wire is located between, and substantially parallel to, a segment of the first power supply wire and a segment of the second power supply wire. Further, the first power supply wire is coupled to a first probe structure; and, the second power supply wire is coupled to a second probe structure.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: August 9, 2016
    Assignee: XILINX, INC.
    Inventors: Myongseob Kim, Henley Liu, Cheang-Whang Chang, Sanjiv Stokes
  • Publication number: 20160097805
    Abstract: In an example implementation, an integrated circuit (IC) includes: a plurality of transistors disposed in a plurality of locations on a die of the IC; conductors coupled to terminals of each of the plurality of transistors; a digital-to-analog converter (DAC), coupled to the conductors, to drive voltage signals to the plurality of transistors in response to a digital input; and an analog-to-digital converter (ADC), coupled to at least a portion of the conductors, to generate samples in response to current signals induced in the plurality of transistors in response to the voltage signals, the samples being indicative of at least one electrostatic characteristic for the plurality of transistors.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Applicant: Xilinx, Inc.
    Inventors: Ping-Chin Yeh, John K. Jennings, Rhesa Nathanael, Nui Chong, Cheang-Whang Chang, Daniel Y. Chung
  • Patent number: 8810269
    Abstract: An integrated circuit (IC) comprises routing circuitry including a plurality of signal line segments in routing layers of the IC, and a plurality of micro-bump contacts coupled to the routing circuitry. The IC includes a plurality of test circuits coupled to respective subsets of the plurality of signal line segments. Each test circuit is configured to connect micro-bump contacts in the respective subset to form first and second sets of daisy chains. Each test circuit is configured to test the first and second sets of daisy chains for open circuits and test for short circuits between the first and second sets of daisy chains. Each test circuit is configured to determine the locations of detected open circuits and determine the locations of detected short circuits.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 19, 2014
    Assignee: Xilinx, Inc.
    Inventors: Yuqing Gong, Henley Liu, Myongseob Kim, Suresh P. Parameswaran, Cheang-Whang Chang, Boon Y. Ang
  • Patent number: 8802454
    Abstract: A method for testing TSVs is provided. A plurality of TSVs is formed in a semiconductor substrate. Wiring layers and a first contact array are formed on the front-side of the substrate. The wiring layers couple each of the TSVs to a respective contact of the first contact array. Conductive adhesive is deposited over the first contact array. The conductive adhesive electrically couples contacts of the first contact array. A carrier is bonded to the front-side of the substrate with the conductive adhesive. After bonding the carrier to the substrate, the back-side of the substrate is thinned to expose each of the TSVs on the back-side of the substrate. A second contact array is formed, having a contact coupled to each respective TSV. Conductivity and connections of the TSVs, wiring layers, and contacts are tested by testing for conductivity between contacts of the second contact array.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Xilinx, Inc.
    Inventors: Arifur Rahman, Henley Liu, Cheang-Whang Chang, Myongseob Kim, Dong W. Kim
  • Publication number: 20140091819
    Abstract: An integrated circuit (IC) comprises routing circuitry including a plurality of signal line segments in routing layers of the IC, and a plurality of micro-bump contacts coupled to the routing circuitry. The IC includes a plurality of test circuits coupled to respective subsets of the plurality of signal line segments. Each test circuit is configured to connect micro-bump contacts in the respective subset to form first and second sets of daisy chains. Each test circuit is configured to test the first and second sets of daisy chains for open circuits and test for short circuits between the first and second sets of daisy chains. Each test circuit is configured to determine the locations of detected open circuits and determine the locations of detected short circuits.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: XILINX, INC.
    Inventors: Yuqing Gong, Henley Liu, Myongseob Kim, Suresh P. Parameswaran, Cheang-Whang Chang, Boon Y. Ang
  • Patent number: 7635843
    Abstract: A method of testing a semiconductor wafer having a test structure performs an E-beam stress scan of the test structure in an E-beam system to electrically stress the test structure to produce a stress defect. An inspection scan is performed in the E-beam system to identify the stress defect.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: December 22, 2009
    Assignee: Xilinx, Inc.
    Inventors: Yuhao Luo, Jonathan Cheang-Whang Chang
  • Patent number: 7091077
    Abstract: Polysilicon or other material is directionally trimmed using two layers of photoresist and a photoresist etching process, such as ashing. A first layer of photoresist is patterned on a wafer. Portions of the first patterned photoresist are covered with a second layer of photoresist. The photoresist is trimmed to reduce the size of the exposed portions of the first patterned photoresist without reducing the size of the covered portions of the first patterned photoresist. The second layer of photoresist is removed. The selectively etched patterned first layer of photoresist is used as a process mask to define a structure in the underlying material. In a particular embodiment, the second photoresist covers endcap portions of gate photoresist. Directional trimming reduces the width of a polysilicon gate structure (i.e. gate length) over an active area of an FET, without reducing the length of original first patterned photoresist.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: August 15, 2006
    Assignee: Xilinx, Inc.
    Inventors: David Kuan-Yu Liu, Jonathan Cheang-Whang Chang
  • Patent number: 6580072
    Abstract: Described are methods of adapting FIB techniques to copper metallization, and to structures that result from the application of such techniques. A method in accordance with the invention can be used to sever copper traces without damaging adjacent material or creating conductive bridges to adjacent traces. Semiconductor devices that employ copper traces typically include a protective passivation layer that protects the copper. This passivation layer is removed to render the copper traces visible to an FIB operator. The copper surface is then oxidized, as by heating the device in air, to form a copper-oxide layer on the exposed copper. With the copper-oxide layer in place, an FIB is used to mill through the copper-oxide and copper layers of a selected copper trace to sever the trace. The copper-oxide layer protects copper surfaces away from the mill site from reactive chemicals used during the milling process. In one embodiment, a copper-oxide layer of at least 40 nanometers thick affords adequate protection.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: June 17, 2003
    Assignee: Xilinx, Inc.
    Inventors: Jonathan Cheang-Whang Chang, Brian J. Wollard