Patents by Inventor Cheng-Bo Shu

Cheng-Bo Shu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276728
    Abstract: A semiconductor device includes a non-volatile memory (NVM) cell. The NVM cell includes a semiconductor wire disposed over an insulating layer disposed on a substrate. The NVM cell includes a select transistor and a control transistor. The select transistor includes a gate dielectric layer disposed around the semiconductor wire and a select gate electrode disposed on the gate dielectric layer. The control transistor includes a stacked dielectric layer disposed around the semiconductor wire and a control gate electrode disposed on the stacked dielectric layer. The stacked dielectric layer includes a charge trapping layer. The select gate electrode is disposed adjacent to the control gate electrode with the stacked dielectric layer interposed therebetween.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Bo Shu, Yun-Chi Wu, Chung-Jen Huang
  • Patent number: 10269822
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Publication number: 20190067302
    Abstract: Various embodiments of the present application are directed to an integrated circuit (IC) comprising a memory cell with a large operation window and a high erase speed. In some embodiments, the IC comprises a semiconductor substrate and a memory cell. The memory cell comprises a control gate electrode, a select gate electrode, a charge trapping layer, and a common source/drain region. The common source/drain is defined by the semiconductor substrate and is n-type. The control gate electrode and the select gate electrode overlie the semiconductor substrate and are respectively on opposite sides of the common source/drain. Further, the control gate electrode overlies the charge trapping layer and comprises a metal with a p-type work function. In some embodiments, the select gate electrode comprises a metal with an n-type work function.
    Type: Application
    Filed: March 26, 2018
    Publication date: February 28, 2019
    Inventors: Yun-Chi Wu, Cheng-Bo Shu, Chien Hung Liu
  • Publication number: 20190043878
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Application
    Filed: September 27, 2018
    Publication date: February 7, 2019
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Publication number: 20190035799
    Abstract: Various embodiments of the present application are directed towards a method to integrate NVM devices with a logic or BCD device. In some embodiments, an isolation structure is formed in a semiconductor substrate. The isolation structure demarcates a memory region of the semiconductor substrate, and further demarcates a peripheral region of the semiconductor substrate. The peripheral region may, for example, correspond to BCD device or a logic device. A doped well is formed in the peripheral region. A dielectric seal layer is formed covering the memory and peripheral regions, and further covering the doped well. The dielectric seal layer is removed from the memory region, but not the peripheral region. A memory cell structure is formed on the memory region using a thermal oxidation process. The dielectric seal layer is removed from the peripheral region, and a peripheral device structure including a gate electrode is formed on the peripheral region.
    Type: Application
    Filed: February 26, 2018
    Publication date: January 31, 2019
    Inventors: Cheng-Bo Shu, Chung-Jen Huang, Yun-Chi Wu
  • Publication number: 20190013414
    Abstract: A semiconductor device includes a non-volatile memory (NVM) cell. The NVM cell includes a semiconductor wire disposed over an insulating layer disposed on a substrate. The NVM cell includes a select transistor and a control transistor. The select transistor includes a gate dielectric layer disposed around the semiconductor wire and a select gate electrode disposed on the gate dielectric layer. The control transistor includes a stacked dielectric layer disposed around the semiconductor wire and a control gate electrode disposed on the stacked dielectric layer. The stacked dielectric layer includes a charge trapping layer. The select gate electrode is disposed adjacent to the control gate electrode with the stacked dielectric layer interposed therebetween.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Cheng-Bo SHU, Yun-Chi Wu, Chung-Jen HUANG
  • Patent number: 10170488
    Abstract: A semiconductor device includes a substrate and a floating gate memory cell. The floating gate memory cell includes an erase gate structure disposed on the substrate, a first floating gate structure, a second floating gate structure, a first word line, a common source, a second word line, a first spacer and a second spacer. The first floating gate structure and the second floating gate structure are recessed in the substrate at two opposite sides of the erase gate structure. The first word line and the second word line are respectively adjacent to the first floating gate structure and the second floating gate structure. The common source is disposed in the substrate under the erase gate structure. The first spacer and the second spacer are respectively disposed between the first floating gate structure and the first word line and between the second floating gate structure and the second word line.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: January 1, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANFACTURING CO., LTD.
    Inventors: Cheng-Bo Shu, Tsung-Yu Yang, Chung-Jen Huang
  • Patent number: 9997527
    Abstract: In a method for manufacturing a semiconductor device, a logic well and a high voltage well are respectively formed in second and third regions of a substrate. A first device structure and a second device structure are formed on a first region of the substrate, third and fourth device structures are respectively formed on the logic well and the high voltage well. A first word line Vt, a source side junction, and a second word line Vt are formed adjacent to the first device structure, between the first device structure and the second device structure, and adjacent to the second device structure. The fourth device structure is removed. A source line junction is formed in the source side junction. The third device structure is removed. First word line and second word lines are respectively formed on the first word line Vt and the second word line Vt.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: June 12, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Bo Shu, Tsung-Yu Yang, Chung-Jen Huang
  • Publication number: 20180151585
    Abstract: In a method for manufacturing a semiconductor device, a logic well and a high voltage well are respectively formed in second and third regions of a substrate. A first device structure and a second device structure are formed on a first region of the substrate, third and fourth device structures are respectively formed on the logic well and the high voltage well. A first word line Vt, a source side junction, and a second word line Vt are formed adjacent to the first device structure, between the first device structure and the second device structure, and adjacent to the second device structure. The fourth device structure is removed. A source line junction is formed in the source side junction. The third device structure is removed. First word line and second word lines are respectively formed on the first word line Vt and the second word line Vt.
    Type: Application
    Filed: January 3, 2017
    Publication date: May 31, 2018
    Inventors: Cheng-Bo Shu, Tsung-Yu Yang, Chung-Jen Huang
  • Publication number: 20180138317
    Abstract: A memory device includes a semiconductor substrate and a pair of control gate stacks on the cell region. Each of the control gate stacks includes a storage layer and a control gate on the storage layer. The memory device includes at least one high-? metal gate stack disposed on the substrate. The high-? metal gate stack has a metal gate and a top surface of the control gate is lower than a top surface of the metal gate. The storage layer includes two oxide layers and a nitride layer, and the nitride layer is interposed in between the two oxide layers.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 17, 2018
    Inventors: Jing-Ru Lin, Cheng-Bo Shu, Tsung-Yu Yang, Chung-Jen Huang
  • Patent number: 9799755
    Abstract: A method for manufacturing a memory device includes forming trenches in a substrate to define an active region, filling an insulation material in the trenches, treating at least one portion of the insulation material, removing an upper portion of the insulation material from the trenches, so as to expose upper portions of side surfaces of the active region and to convert remaining portions of the insulation material in the trenches to shallow trench isolation (STI) disposed on opposite sides of the active region, forming a lower oxide layer, a middle charge trapping layer, and an upper oxide layer which cover the exposed upper portions of the side surfaces of the active region, an upper surface of the active region between the side surfaces of the active region, and the STI, and forming a gate layer on the upper oxide layer.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: October 24, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Yu Yang, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Jui-Yu Pan, Yun-Chi Wu, Yueh-Chieh Chu
  • Publication number: 20170278953
    Abstract: A method for manufacturing a memory device includes forming trenches in a substrate to define an active region, filling an insulation material in the trenches, treating at least one portion of the insulation material, removing an upper portion of the insulation material from the trenches, so as to expose upper portions of side surfaces of the active region and to convert remaining portions of the insulation material in the trenches to shallow trench isolation (STI) disposed on opposite sides of the active region, forming a lower oxide layer, a middle charge trapping layer, and an upper oxide layer which cover the exposed upper portions of the side surfaces of the active region, an upper surface of the active region between the side surfaces of the active region, and the STI, and forming a gate layer on the upper oxide layer.
    Type: Application
    Filed: September 14, 2016
    Publication date: September 28, 2017
    Inventors: Tsung-Yu YANG, Cheng-Bo SHU, Chung-Jen HUANG, Jing-Ru LIN, Jui-Yu PAN, Yun-Chi WU, Yueh-Chieh CHU
  • Publication number: 20170186762
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 29, 2017
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu