Patents by Inventor Cheng-Guo Jin

Cheng-Guo Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7696072
    Abstract: A method for introducing impurities includes a step for forming an amorphous layer at a surface of a semiconductor substrate, and a step for forming a shallow impurity-introducing layer at the semiconductor substrate which has been made amorphous, and an apparatus used therefore. Particularly, the step for forming the amorphous layer is a step for irradiating plasma to the surface of the semiconductor substrate, and the step for forming the shallow impurity-introducing layer is a step for introducing impurities into the surface which has been made amorphous.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: April 13, 2010
    Assignee: Panasonic Corporation
    Inventors: Yuichiro Sasaki, Bunji Mizuno, Cheng-Guo Jin
  • Publication number: 20100009469
    Abstract: During a plasma discharging process, a laser beam having a certain exciting wavelength is applied to a surface of a process substrate, so as to measure, using scattered light, an impurity density and a crystal state on the surface of the process substrate.
    Type: Application
    Filed: March 5, 2009
    Publication date: January 14, 2010
    Inventors: Takayuki Kai, Tomohiro Okumura, Hisao Nagai, Cheng-Guo Jin, Bunji Mizuno
  • Patent number: 7626184
    Abstract: It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Bunji Mizuno, Ichiro Nakayama, Yuichiro Sasaki, Tomohiro Okumura, Cheng-Guo Jin, Hiroyuki Ito
  • Patent number: 7622725
    Abstract: It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: November 24, 2009
    Assignee: Panaosnic Corporation
    Inventors: Bunji Mizuno, Ichiro Nakayama, Yuichiro Sasaki, Tomohiro Okumura, Cheng-Guo Jin, Hiroyuki Ito
  • Patent number: 7618883
    Abstract: A method for introducing impurities includes a step for forming an amorphous layer at a surface of a semiconductor substrate, and a step for forming a shallow impurity-introducing layer at the semiconductor substrate which has been made amorphous, and an apparatus used therefore. Particularly, the step for forming the amorphous layer is a step for irradiating plasma to the surface of the semiconductor substrate, and the step for forming the shallow impurity-introducing layer is a step for introducing impurities into the surface which has been made amorphous.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: November 17, 2009
    Assignee: Panasonic Corporation
    Inventors: Yuichiro Sasaki, Bunji Mizuno, Cheng-Guo Jin
  • Patent number: 7601619
    Abstract: A method and an apparatus for plasma processing which can accurately monitor an ion current applied to the surface of a sample. Predetermined gas is exhausted via an exhaust port by a turbo-molecular pump while introducing the gas within the vacuum chamber from a gas supply device, and the pressure within the vacuum chamber is kept at a predetermined value by a pressure regulating valve. A high-frequency power supply for a plasma source supplies a high-frequency power to a coil provided near a dielectric window to generate inductively coupled plasma within the vacuum chamber. A high-frequency power supply for the sample electrode for supplying the high-frequency power to the sample electrode is provided. A matching circuit for the sample electrode and a high-frequency sensor are provided between the sample electrode high-frequency power supply and the sample electrode. An ion current applied to the surface of a sample can be accurately monitored buy using the high-frequency sensor and an arithmetic device.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama
  • Publication number: 20090233383
    Abstract: It is intended to provide a plasma doping method and apparatus which are superior in the controllability of the concentration of an impurity that is introduced into a surface layer of a sample. A prescribed gas is introduced into a vacuum container 1 from a gas supply apparatus 2 while being exhausted by a turbomolecular pump 3 as an exhaust apparatus. The pressure in the vacuum container 1 is kept at a prescribed value by a pressure regulating valve 4. High-frequency electric power of 13.56 MHz is supplied from a high-frequency power source 5 to a coil 8 disposed close to a dielectric window 7 which is opposed to a sample electrode 6, whereby induction-coupled plasma is generated in the vacuum container 1. A high-frequency power source 10 for supplying high-frequency electric power to the sample electrode 6 is provided. Every time a prescribed number of samples have been processed, a dummy sample is subjected to plasma doping and then to heating.
    Type: Application
    Filed: February 14, 2006
    Publication date: September 17, 2009
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama
  • Patent number: 7582492
    Abstract: The invention provides a method of doping impurities that includes a step of doping impurities in a solid base substance by using a plasma doping method, a step of forming a light antireflection layer that functions to reduce light reflection on the surface of the solid base substance, and a step of performing annealing by light radiation. According to the method, it is possible to reduce the reflectance of light radiated during annealing, to efficiently apply energy an impurity doped layer, to improve activation efficiency, to prevent diffusion, and to reduce sheet resistance of the impurity doped layer.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: September 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Cheng-Guo Jin, Yuichiro Sasaki, Bunji Mizuno, Katsumi Okashita, Hiroyuki Ito, Tomohiro Okumura, Satoshi Maeshima, Ichiro Nakayama
  • Publication number: 20090181526
    Abstract: An object of the invention is to provide a plasma doping method and a plasma doping apparatus in which uniformity of concentration of impurities introduced into a sample surface are excellent. The plasma doping apparatus of the invention introduces a predetermined mass flow of gas from a gas supply device (2) into a vacuum chamber (1) while discharging the gas through an exhaust port (11) by a turbo-molecular pump (3), which is an exhaust device in order to maintain the vacuum chamber (1) under a predetermined pressure by a pressure adjusting valve (4). A high-frequency power source (5) supplies high-frequency power of 13.56 MHz to a coil (8) disposed in the vicinity of a dielectric window (7) opposite a sample electrode (6) in order to generate an inductively coupled plasma in the vacuum chamber (1). A high-frequency power source (10) for supplying high-frequency power to the sample electrode (6) is provided.
    Type: Application
    Filed: March 30, 2006
    Publication date: July 16, 2009
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Bunji Mizuno, Hiroyuki Ito, Ichiro Nakayama, Cheng-Guo Jin
  • Publication number: 20090176355
    Abstract: An object of the invention is to provide a plasma doping method excellent in the uniformity of concentration of impurities introduced into the surface of a sample and a plasma processing device capable of uniformly performing plasma processing of a sample. In a plasma doping device according to the invention, a vacuum chamber (1) is evacuated with a turbo-molecular pump (3) as an exhaust device via a exhaust port 11 while a predetermined gas is being introduced from a gas supply device (2) in order to maintain the inside of the vacuum chamber (1) to a predetermined pressure with a pressure regulating valve (4). A high-frequency power of 13.56 MHz is supplied by a high-frequency power source (5) to a coil (8) provided in the vicinity of a dielectric window (7) opposed to a sample electrode (6) to generate inductive-coupling plasma in the vacuum chamber (1). A high-frequency power source (10) for supplying a high-frequency power to the sample electrode (6) is provided.
    Type: Application
    Filed: March 29, 2006
    Publication date: July 9, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Bunji Mizuno, Hiroyuki Ito, Ichiro Nakayama, Cheng-Guo Jin
  • Publication number: 20090140174
    Abstract: It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
    Type: Application
    Filed: March 29, 2006
    Publication date: June 4, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Bunji Mizuno, Ichiro Nakayama, Yuichiro Sasaki, Tomohiro Okumura, Cheng-Guo Jin, Hiroyuki Ito
  • Publication number: 20090104783
    Abstract: To provide an asher, an ashing method and an impurity doping apparatus group which can detect the interface between a surface hardening layer of a resist and an internal nonhardening layer and the interface between the nonhardening layer and a semiconductor substrate, with a high throughput. The invention provides the asher for plasma ashing the surface hardening layer formed on the resist and the internal nonhardening layer, the resist for use as a mask coated on the semiconductor substrate and doped with impurity, characterized by comprising an elipsometer for causing a linearly polarized light to enter the semiconductor substrate to detect a reflected, elliptically polarized light during plasma ashing, and detecting the interface between the hardening layer and the nonhardening layer and the interface between the nonhardening layer and the semiconductor substrate.
    Type: Application
    Filed: March 30, 2006
    Publication date: April 23, 2009
    Inventors: Cheng-Guo Jin, Bunji Mizuno, Yuichiro Sasaki
  • Publication number: 20090068769
    Abstract: An object of the invention is to provide a method and an apparatus for plasma processing which can accurately monitor an ion current applied to the surface of a sample. Predetermined gas is exhausted via an exhaust port 11 by a turbo-molecular pump 3 while introducing the gas within the vacuum chamber 1 from a gas supply device 2, and the pressure within the vacuum chamber 1 is kept at a predetermined value by a pressure regulating valve 4. A high-frequency power supply 5 for a plasma source supplies a high-frequency power to a coil 8 provided near a dielectric window 7 to generate inductively coupled plasma within the vacuum chamber 1. A high-frequency power supply 10 for the sample electrode for supplying the high-frequency power to the sample electrode 6 is provided. A matching circuit 13 for the sample electrode and a high-frequency sensor 14 are provided between the sample electrode high-frequency power supply and the sample electrode 6.
    Type: Application
    Filed: April 4, 2006
    Publication date: March 12, 2009
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama
  • Publication number: 20090023262
    Abstract: To provide a fine transistor of high precision. A method for fabricating a transistor comprises the step of forming a gate electrode (340) on the surface of a semiconductor substrate, the step of introducing an impurity across said gate electrode (340), and the step of activating said impurity, thereby to form a source/drain region (310, 320) in the region having said impurity introduced thereinto. In the transistor fabricating method, the step of introducing said impurity includes a plasma irradiating step. The method further comprises the step of forming, prior to said activating step, a reflection preventing film (400) on the surface of the region having said impurity introduced thereinto, so that the optical reflectivity of said impurity introduced region may be lower than the reflectivity of said gate electrode surface.
    Type: Application
    Filed: August 3, 2005
    Publication date: January 22, 2009
    Inventors: Cheng-Guo Jin, Yuichiro Sasaki, Hiroyuki Ito, Bunji Mizuno
  • Patent number: 7456085
    Abstract: To provide an impurity introducing method which can repeatedly carry out such a process that plasma irradiation for realization of amorphous and plasma doping were combined, in such a situation that steps are simple and through-put is high, without destroying an apparatus. At the time of switching over plasmas which are used in plasma irradiation for realization of amorphous and plasma doping, electric discharge is stopped, and an initial condition of a matching point of a high frequency power supply and a peripheral circuit is reset so as to adapt to plasma which is used in each step, or at the time of switching, a load, which is applied to the high frequency power supply etc., is reduced by increasing pressure and decreasing a bias voltage.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: November 25, 2008
    Assignee: Panasonic Corporation
    Inventors: Yuichiro Sasaki, Tomohiro Okumura, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama, Satoshi Maeshima, Katsumi Okashita
  • Publication number: 20080258082
    Abstract: It is intended to provide a plasma processing method and apparatus capable of increasing the uniformity of amorphyzation processing. A prescribed gas is introduced into a vacuum container 1 from a gas supply apparatus 2 through a gas inlet 11 while being exhausted by a turbomolecular pump 3 as an exhaust apparatus through an exhaust hole 12. The pressure in the vacuum container 1 is kept at a prescribed value by a pressure regulating valve 4. High-frequency electric power of 13.56 MHz is supplied from a high-frequency power source 5 to a coil 8 disposed close to a dielectric window 7 which is opposed to a sample electrode 6, whereby induction-coupled plasma is generated in the vacuum container 1. A high-frequency power source 10 for supplying high-frequency electric power to the sample electrode 6 is provided and functions as a voltage source for controlling the potential of the sample electrode 6.
    Type: Application
    Filed: October 27, 2005
    Publication date: October 23, 2008
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Cheng-Guo Jin, Satoshi Maeshima, Hiroyuki Ito, Ichiro Nakayama, Bunji Mizuno
  • Publication number: 20080210167
    Abstract: It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
    Type: Application
    Filed: May 16, 2008
    Publication date: September 4, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Bunji Mizino, Ichiro Nakayama, Yuichiro Sasaki, Tomohiro Okumura, Cheng-Guo Jin, Hiroyuki Ito
  • Publication number: 20080194086
    Abstract: There is provided a method of introducing impurity capable of efficiently realizing a shallow impurity introduction. The impurity introducing method includes a first step of making a surface of a semiconductor layer to be amorphous by reacting plasma composed of particles which are electrically inactive in the semiconductor layer to a surface of a solid base body including the semiconductor layer, and a second step of introducing impurity to the surface of the solid base body. After performing the first step, by performing the second step, an amorphous layer with fine pores is formed on the surface of the solid base body including the semiconductor layer, and impurity are introduced in the amorphous layer to form an impurity introducing layer.
    Type: Application
    Filed: May 31, 2005
    Publication date: August 14, 2008
    Inventors: Yuichiro Sasaki, Bunji Mizuno, Katsumi Okashita, Cheng-Guo Jin, Hiroyuki Ito
  • Publication number: 20080182348
    Abstract: A subject of the present invention is to realize an impurity doping not to bring about a rise of a substrate temperature. Another subject of the present invention is to measure optically physical properties of a lattice defect generated by the impurity doping step to control such that subsequent steps are optimized. An impurity doping method, includes a step of doping an impurity into a surface of a solid state base body, a step of measuring an optical characteristic of an area into which the impurity is doped, a step of selecting annealing conditions based on a measurement result to meet the optical characteristic of the area into which the impurity is doped, and a step of annealing the area into which the impurity is doped, based on the selected annealing conditions.
    Type: Application
    Filed: September 22, 2004
    Publication date: July 31, 2008
    Inventors: Cheng-Guo Jin, Yuichiro Sasaki, Bunji Mizuno
  • Publication number: 20080166861
    Abstract: It is an object to prevent functions expected originally from being unexhibited when impurities to be introduced into a solid sample are mixed with each other, and to implement plasma doping with high precision. In order to distinguish impurities which may be mixed from impurities which should not be mixed, first of all, an impurity introducing mechanism of a core is first distinguished. In order to avoid a mixture of the impurities in very small amounts, a mechanism for delivering a semiconductor substrate to be treated and a mechanism for removing a resin material to be formed on the semiconductor substrate are used exclusively.
    Type: Application
    Filed: March 27, 2008
    Publication date: July 10, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Bunji Mizuno, Ichiro Nakayama, Yuichiro Sasaki, Tomohiro Okumura, Cheng-Guo Jin, Hiroyuki Ito