Patents by Inventor Cheng-Hsuan Lin

Cheng-Hsuan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151948
    Abstract: A photographing optical lens assembly includes, in order from an object side to an image side along an optical axis, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The second lens element has negative refractive power. The third lens element has an object-side surface being convex in a paraxial region thereof.
    Type: Application
    Filed: January 17, 2024
    Publication date: May 9, 2024
    Inventors: Cheng-Chen LIN, Hsin-Hsuan HUANG, Shu-Yun YANG
  • Publication number: 20240102860
    Abstract: An apparatus includes a six-axis correction stage, an auto-collimation measurement device, a light splitter, a telecentric image measurement device, and a controller. The six-axis correction stage carries a device under test; the auto-collimation measurement device is arranged above the six-axis correction stage along a measurement optical axis; the light splitter is arranged on the measurement optical axis and is interposed between the six-axis correction stage and the auto-collimation measurement device. A method controls the six-axis correction stage to correct rotation errors in at least two degrees of freedom of the device under test according to a measurement result of the auto-collimation measurement device, and controls the six-axis correction stage to correct translation and yaw errors in at least three degrees of freedom of the device under test according to a measurement result of the telecentric image measurement device by means of the controller.
    Type: Application
    Filed: September 5, 2023
    Publication date: March 28, 2024
    Inventors: Cheng Chih HSIEH, Tien Chi WU, Ming-Long LEE, Yu-Hsuan LIN, Tsung-I LIN, Chien-Hao MA
  • Patent number: 11942585
    Abstract: An optoelectronic package structure and a method of manufacturing an optoelectronic package structure are provided. The optoelectronic package structure includes a photonic component. The photonic component has an electrical connection region, a blocking region and a region for accommodating a device. The blocking region is located between the electrical connection region and the region for accommodating a device.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: March 26, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Cheng-Hsuan Wu, Chang-Yu Lin, Yu-Sheng Huang
  • Publication number: 20240069618
    Abstract: The disclosure provides a power management method. The power management method is applicable to an electronic device. The electronic device is electrically coupled to an adapter, and includes a system and a battery. The adapter has a feed power. The battery has a discharge power. The power management method of the disclosure includes: reading a power value of the battery; determining a state of the system; and discharging power to the system, when the system is in a power-on state and the power value is greater than a charging stopping value, by using the battery, and controlling, according to the discharge power and the feed power, the adapter to selectively supply power to the system. The disclosure further provides an electronic device using the power management method.
    Type: Application
    Filed: April 27, 2023
    Publication date: February 29, 2024
    Inventors: Wen Che CHUNG, Hui Chuan LO, Hao-Hsuan LIN, Chun TSAO, Jun-Fu CHEN, Ming-Hung YAO, Jia-Wei ZHANG, Kuan-Lun CHEN, Ting-Chao LIN, Cheng-Yen LIN, Chunyen LAI
  • Patent number: 11914106
    Abstract: A photographing optical lens assembly includes, in order from an object side to an image side along an optical axis, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The second lens element has negative refractive power. The third lens element has an object-side surface being convex in a paraxial region thereof.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: February 27, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Cheng-Chen Lin, Hsin-Hsuan Huang, Shu-Yun Yang
  • Patent number: 11664399
    Abstract: The solid-state image sensor includes a semiconductor substrate having first and second photoelectric conversion elements, a color filter layer, and a hybrid layer. The isolation structure is disposed between the first and second photoelectric conversion elements. The color filter layer is disposed above the semiconductor substrate. The hybrid layer is disposed between the semiconductor substrate and the color filter layer. The hybrid layer includes a first partition structure, a second partition structure, and a transparent layer. The first partition structure is disposed to correspond to the isolation structure. The second partition structure is surrounded by the first partition structure. The transparent layer is between the first partition structure and the second partition structure. The refractive index of the first partition structure and the refractive index of the second partition structure are lower than the refractive index of the transparent layer.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: May 30, 2023
    Assignee: VISERA TECHNOLOGIES COMPANY LIMITED
    Inventors: Cheng-Hsuan Lin, Yu-Chi Chang, Zong-Ru Tu
  • Publication number: 20230136503
    Abstract: A method for monitoring and controlling multi-phase condition of reactant in manufacturing process is provided. The monitoring and controlling method includes the following steps. A plurality of clusters of monitoring images is captured corresponding to a plurality of process reaction time points in a plurality of observation regions. According to the clusters of the monitoring images, a plurality of image index features is extracted. According to the image index features, a plurality of phase modes corresponding to the observation regions is determined. According to the image index features, a cluster of generation characteristics of the reactant corresponding to the phase modes is determined. According to the cluster of generation characteristics, an adjustment of the manufacturing process is performed.
    Type: Application
    Filed: June 29, 2022
    Publication date: May 4, 2023
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Feng-Sheng KAO, Tzu-Yu LIU, Cheng-Hsuan LIN, Chih-Ying YEN
  • Patent number: 11631709
    Abstract: A solid-state image sensor is provided. The solid-state image sensor includes a plurality of photoelectric conversion elements. The solid-state image sensor also includes a first color filter layer disposed above the photoelectric conversion elements and having a plurality of first color filter segments. The solid-state image sensor further includes a second color filter layer disposed adjacent to the first color filter layer and having a plurality of second color filter segments. The solid-state image sensor includes a first grid structure disposed between the first color filter layer and the second color filter layer. The first grid structure has a first grid height. The solid-state image sensor also includes a second grid structure disposed between the first color filter segments and between the second color filter segments. The second grid structure has a second grid height that is lower than or equal to the first grid height.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: April 18, 2023
    Assignee: VISERA TECHNOLOGIES COMPANY LIMITED
    Inventors: Ching-Hua Li, Yu-Chi Chang, Cheng-Hsuan Lin, Han-Lin Wu
  • Publication number: 20230110102
    Abstract: A solid-state image sensor is provided. The solid-state image sensor includes photoelectric conversion elements and a color filter layer disposed above the photoelectric conversion elements. The photoelectric conversion elements and the color filter layer form normal pixels and auto-focus pixels, the color filter layer that correspond to the normal pixels are divided into first color filter segments and second color filter segments, the first color filter segments are disposed on at least one side that is closer to an incident light, and the width of the first color filter segments is greater than the width of the second color filter segments.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 13, 2023
    Inventors: Ching-Hua LI, Cheng-Hsuan LIN, Zong-Ru TU, Yu-Chi CHANG, Han-Lin WU
  • Patent number: 11477364
    Abstract: A solid-state image sensor having a first region and a second region adjacent to the first region along a first direction is provided. The solid-state image sensor includes a first unit pattern disposed in the first region. The solid-state image sensor also includes a second unit pattern disposed in the second region and corresponding to the first unit pattern. The first unit pattern and the second unit pattern each includes normal pixels and an auto-focus pixel array. The normal pixels and the auto-focus pixel array in the first unit pattern form a first arrangement, the normal pixels and the auto-focus pixel array in the second unit pattern form a second arrangement, and the first arrangement and the second arrangement are symmetric with respect to the first axis of symmetry.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: October 18, 2022
    Assignee: VISERA TECHNOLOGIES COMPANY LIMITED
    Inventors: Cheng-Hsuan Lin, Zong-Ru Tu, Yu-Chi Chang, Han-Lin Wu, Hung-Jen Tsai
  • Publication number: 20220321791
    Abstract: A solid-state image sensor having a first region and a second region adjacent to the first region along a first direction is provided. The solid-state image sensor includes a first unit pattern disposed in the first region. The solid-state image sensor also includes a second unit pattern disposed in the second region and corresponding to the first unit pattern. The first unit pattern and the second unit pattern each includes normal pixels and an auto-focus pixel array. The normal pixels and the auto-focus pixel array in the first unit pattern form a first arrangement, the normal pixels and the auto-focus pixel array in the second unit pattern form a second arrangement, and the first arrangement and the second arrangement are symmetric with respect to the first axis of symmetry.
    Type: Application
    Filed: August 18, 2021
    Publication date: October 6, 2022
    Inventors: Cheng-Hsuan LIN, Zong-Ru TU, Yu-Chi CHANG, Han-Lin WU, Hung-Jen TSAI
  • Publication number: 20220246657
    Abstract: The solid-state image sensor includes a semiconductor substrate having first and second photoelectric conversion elements, a color filter layer, and a hybrid layer. The isolation structure is disposed between the first and second photoelectric conversion elements. The color filter layer is disposed above the semiconductor substrate. The hybrid layer is disposed between the semiconductor substrate and the color filter layer. The hybrid layer includes a first partition structure, a second partition structure, and a transparent layer. The first partition structure is disposed to correspond to the isolation structure. The second partition structure is surrounded by the first partition structure. The transparent layer is between the first partition structure and the second partition structure. The refractive index of the first partition structure and the refractive index of the second partition structure are lower than the refractive index of the transparent layer.
    Type: Application
    Filed: February 1, 2021
    Publication date: August 4, 2022
    Inventors: Cheng-Hsuan LIN, Yu-Chi CHANG, Zong-Ru TU
  • Publication number: 20220181370
    Abstract: An image sensor includes: a group of autofocus sensor units; neighboring sensor units adjacent to and surrounding the group of autofocus sensor units, wherein each of the neighboring sensor units has a first side close to the group of autofocus sensor units, and a second side away from the group of autofocus sensor units. The image sensor further includes: a first light shielding structure disposed between the group of autofocus sensor units and the neighboring sensor units; a first extra light shielding structure laterally extending from the first light shielding structure and disposed on at least one of the first side and the second side of one or more of the neighboring sensor units.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Inventors: Cheng-Hsuan LIN, Yu-Chi CHANG
  • Patent number: 11354929
    Abstract: A fingerprint recognition device includes a light source, a light conversion layer, a light detector, and a light filter. The light source is configured to emit a first light having a first wavelength. The light conversion layer is configured to convert the first light to a second light having a second wavelength different from the first wavelength. The light detector is configured to detect the second light reflected by a fingerprint. The light filter is disposed between the light conversion layer and the light detector, and configured to substantially filter out the first light and substantially pass the second light.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: June 7, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ping-Chen Chen, Cheng-Hsuan Lin, Yu-Ling Hsu, Ding-Zheng Lin
  • Publication number: 20210288090
    Abstract: A solid-state image sensor is provided. The solid-state image sensor includes a plurality of photoelectric conversion elements. The solid-state image sensor also includes a first color filter layer disposed above the photoelectric conversion elements and having a plurality of first color filter segments. The solid-state image sensor further includes a second color filter layer disposed adjacent to the first color filter layer and having a plurality of second color filter segments. The solid-state image sensor includes a first grid structure disposed between the first color filter layer and the second color filter layer. The first grid structure has a first grid height. The solid-state image sensor also includes a second grid structure disposed between the first color filter segments and between the second color filter segments. The second grid structure has a second grid height that is lower than or equal to the first grid height.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 16, 2021
    Inventors: Ching-Hua LI, Yu-Chi CHANG, Cheng-Hsuan LIN, Han-Lin WU
  • Publication number: 20200265209
    Abstract: A fingerprint recognition device includes a light source, a light conversion layer, a light detector, and a light filter. The light source is configured to emit a first light having a first wavelength. The light conversion layer is configured to convert the first light to a second light having a second wavelength different from the first wavelength. The light detector is configured to detect the second light reflected by a fingerprint. The light filter is disposed between the light conversion layer and the light detector, and configured to substantially filter out the first light and substantially pass the second light.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ping-Chen CHEN, Cheng-Hsuan LIN, Yu-Ling HSU, Ding-Zheng LIN
  • Patent number: 10699098
    Abstract: A fingerprint recognition device includes a light source, a light conversion layer, a light detector, and a light filter. The light source is configured to emit a first light having a first wavelength. The light conversion layer is configured to convert the first light to a second light having a second wavelength different from the first wavelength. The light detector is configured to detect the second light reflected by a fingerprint. The light filter is disposed between the light conversion layer and the light detector, and configured to substantially filter out the first light and substantially pass the second light.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 30, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ping-Chen Chen, Cheng-Hsuan Lin, Yu-Ling Hsu, Ding-Zheng Lin
  • Patent number: 10686000
    Abstract: A solid-state imaging device includes multiple photoelectric conversion elements arrayed in a pixel array. The solid-state imaging device also includes a color filter layer having multiple color filter segments above the photoelectric conversion elements. Each of the color filter segments is disposed in a respective pixel of the pixel array. The solid-state imaging device further includes an optical waveguide layer over the color filter layer. The optical waveguide layer includes a waveguide partition grid and a waveguide material in the spaces of the waveguide partition grid. The waveguide material has a refractive index that is higher than the refractive index of the waveguide partition grid. The waveguide material provides the same refractive index for each pixel of the pixel array.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: June 16, 2020
    Assignee: VISERA TECHNOLOGIES COMPANY LIMITED
    Inventors: Cheng-Hsuan Lin, Zong-Ru Tu, Yu-Chi Chang, Ching-Hua Li
  • Publication number: 20190180070
    Abstract: A fingerprint recognition device includes a light source, a light conversion layer, a light detector, and a light filter. The light source is configured to emit a first light having a first wavelength. The light conversion layer is configured to convert the first light to a second light having a second wavelength different from the first wavelength. The light detector is configured to detect the second light reflected by a fingerprint. The light filter is disposed between the light conversion layer and the light detector, and configured to substantially filter out the first light and substantially pass the second light.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 13, 2019
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ping-Chen Chen, Cheng-Hsuan Lin, Yu-Ling Hsu, Ding-Zheng Lin
  • Patent number: 10156733
    Abstract: A lens device comprises a connect assembly, a lens assembly and a drive assembly. The lens assembly is disposed on the connect assembly and has a central axis. The drive assembly comprises a first coil, a magnet and a second coil. The first coil is wound around the lens assembly. The magnet is disposed on the connect assembly and has a first magnetic pole, a second magnetic pole, a first direction of magnetic field and a second direction of magnetic field. The first direction of magnetic field and the second direction of magnetic field are not parallel to each other. The first direction of magnetic field points toward the first coil. The second coil is disposed on the connect assembly. The second direction of magnetic field points toward a part of the second coil.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: December 18, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shou-Cheng Ma, Cheng-Hsuan Lin, Wen-Yang Peng, Chieh-Yi Huang, Chau-Shin Jang