Patents by Inventor Cheng-Hsuan Wu

Cheng-Hsuan Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12235586
    Abstract: Impurities in a liquefied solid fuel utilized in a droplet generator of an extreme ultraviolet photolithography system are removed from vessels containing the liquefied solid fuel. Removal of the impurities increases the stability and predictability of droplet formation which positively impacts wafer yield and droplet generator lifetime.
    Type: Grant
    Filed: August 7, 2023
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hao Lai, Ming-Hsun Tsai, Hsin-Feng Chen, Wei-Shin Cheng, Yu-Kuang Sun, Cheng-Hsuan Wu, Yu-Fa Lo, Shih-Yu Tu, Jou-Hsuan Lu, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20250015069
    Abstract: A semiconductor package structure and a method of manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a first electronic device and a second electronic device. The first electronic device has an active surface and a lateral surface angled with the active surface, and the lateral surface includes a first portion and a second portion that is non-coplanar with the first portion. The second electronic device is disposed on the active surface of the first electronic device.
    Type: Application
    Filed: September 24, 2024
    Publication date: January 9, 2025
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chang-Yu LIN, Cheng-Hsuan WU
  • Patent number: 12167526
    Abstract: An extreme ultraviolet (EUV) photolithography system generates EUV light by irradiating droplets with a laser. The system includes a droplet generator with a nozzle and a piezoelectric structure coupled to the nozzle. The generator outputs groups of droplets. A control system applies a voltage waveform to the piezoelectric structure while the nozzle outputs the group of droplets. The waveform causes the droplets of the group to have a spread of velocities that results in the droplets coalescing into a single droplet prior to being irradiated by the laser.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: December 10, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuang Sun, Cheng-Hao Lai, Yu-Huan Chen, Wei-Shin Cheng, Ming-Hsun Tsai, Hsin-Feng Chen, Chiao-Hua Cheng, Cheng-Hsuan Wu, Yu-Fa Lo, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Patent number: 12158701
    Abstract: A particle removal device, along with methods of using such, are described. The device includes a handheld module having a body. A first one or more channels and a second one or more channels are formed in the body. The body includes a nozzle, and the handheld module is configured to provide suction by the nozzle and to inject an ionized fluid stream by the nozzle. The body further includes a handle attached to the nozzle.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: December 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsuan Wu, Ming-Hsun Tsai, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20240365461
    Abstract: The present disclosure is directed to a modularized vessel droplet generator assembly (MGDVA) including a droplet generator assembly (DGA). Under a normal operation, the liquid fuel moves along an operation pathway extending through the DGA to eject or discharge the liquid fuel (e.g., liquid tin) from a nozzle of the DGA into a vacuum chamber. The liquid fuel in the vacuum chamber is then exposed to a laser generating an extreme ultra-violet (EUV) light. Under a service operation, the operation pathway is closed and a service pathway extending through the DGA is opened. A gas is introduced into the service pathway forming a gas-liquid interface between the gas and the liquid fuel. The gas-liquid interface is driven to an isolation valve directly adjacent to the DGA. In other words, the gas pushes back the liquid fuel to the isolation valve. Once the gas-liquid interface reaches the isolation valve, the isolation valve is closed isolating the DGA from the liquid fuel.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Yu-Kuang SUN, Ming-Hsun TSAI, Wei-Shin CHENG, Cheng-Hao LAI, Hsin-Feng CHEN, Chiao-Hua CHENG, Cheng-Hsuan WU, Yu-Fa LO, Jou-Hsuan LU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20240365460
    Abstract: The present disclosure is directed to a modularized vessel droplet generator assembly (MGDVA) including a droplet generator assembly (DGA). Under a normal operation, the liquid fuel moves along an operation pathway extending through the DGA to eject or discharge the liquid fuel (e.g., liquid tin) from a nozzle of the DGA into a vacuum chamber. The liquid fuel in the vacuum chamber is then exposed to a laser generating an extreme ultra-violet (EUV) light. Under a service operation, the operation pathway is closed and a service pathway extending through the DGA is opened. A gas is introduced into the service pathway forming a gas-liquid interface between the gas and the liquid fuel. The gas-liquid interface is driven to an isolation valve directly adjacent to the DGA. In other words, the gas pushes back the liquid fuel to the isolation valve. Once the gas-liquid interface reaches the isolation valve, the isolation valve is closed isolating the DGA from the liquid fuel.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Yu-Kuang SUN, Ming-Hsun TSAI, Wei-Shin CHENG, Cheng-Hao LAI, Hsin-Feng CHEN, Chiao-Hua CHENG, Cheng-Hsuan WU, Yu-Fa LO, Jou-Hsuan LU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Publication number: 20240361701
    Abstract: A method of inspecting an extreme ultraviolet (EUV) radiation source includes, in an idle mode, inserting a borescope mounted on a fixture through a first opening into a chamber of the EUV radiation source. The borescope includes a connection cable attached at a first end to a camera. The EUV radiation source includes an excitation laser that generates a light beam that is configured to focus onto tin droplets to generate EUV radiation inside the chamber of the EUV radiation source. The method further includes extending the extendible section, in a direction toward the second opening of the EUV radiation source, to move the camera beyond the blocking shield, and acquiring one or more images from a region beyond the blocking shield. The method also includes analyzing the one or more acquired images to determine an amount of tin debris deposited inside the chamber of the EUV radiation source.
    Type: Application
    Filed: July 9, 2024
    Publication date: October 31, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chiao-Hua CHENG, Sheng-Kang YU, Shang-Chieh CHIEN, Wei-Chun YEN, Heng-Hsin LIU, Ming-Hsun TSAI, Yu-Fa LO, Li-Jui CHEN, Wei-Shin CHENG, Cheng-Hsuan WU, Cheng-Hao LAI, Yu-Kuang SUN, Yu-Huan CHEN
  • Publication number: 20240345493
    Abstract: A photolithographic apparatus includes a droplet generator, a droplet generator maintenance system, and a controller communicating with the droplet generator maintenance system. The droplet generator maintenance system operatively communicates with the droplet generator, a coolant distribution unit, a gas supply unit, and a supporting member. The gas supply unit includes a heat exchange assembly and an air heating assembly. The coolant distribution unit is configured to control the temperature of the droplet generator within the acceptable droplet generator range.
    Type: Application
    Filed: June 27, 2024
    Publication date: October 17, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Huan CHEN, Cheng-Hsuan WU, Ming-Hsun TSAI, Shang-Chieh CHIEN, Li-Jui CHEN
  • Publication number: 20240323999
    Abstract: A multi-link transmission device includes a first transmission module, a second transmission module, an analysis module and a multi-link control module. The first transmission module transmits each packet in the first transmission module via a first link, and transmits a first transmission condition for each pack transmission for the first transmission module. The second transmission module transmits each packet in the second transmission module via a second link, and transmits a second transmission condition for each pack transmission for the second transmission module. The analysis module computes a ratio of packet consumption rates of the first transmission module and the second transmission module according to the first transmission condition and the second transmission condition. The multi-link control module dispatches a packet to the first transmission module or the second transmission module according to at least the ratio of the packet consumption rates.
    Type: Application
    Filed: December 1, 2023
    Publication date: September 26, 2024
    Applicant: Realtek Semiconductor Corp.
    Inventor: Cheng-Hsuan Wu
  • Patent number: 12100697
    Abstract: A semiconductor package structure and a method of manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a first electronic device and a second electronic device. The first electronic device has an active surface and a lateral surface angled with the active surface, and the lateral surface includes a first portion and a second portion that is non-coplanar with the first portion. The second electronic device is disposed on the active surface of the first electronic device.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: September 24, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Chang-Yu Lin, Cheng-Hsuan Wu
  • Patent number: 12096543
    Abstract: A method for using an extreme ultraviolet radiation source is provided. The method includes performing a lithography process using an extreme ultraviolet (EUV) radiation source; after the lithography processes, inserting an extraction tube into a vessel of the EUV radiation source; and cleaning a collector of the EUV radiation source by using the extraction tube.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: September 17, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chiao-Hua Cheng, Hsin-Feng Chen, Yu-Fa Lo, Yu-Kuang Sun, Wei-Shin Cheng, Yu-Huan Chen, Ming-Hsun Tsai, Cheng-Hao Lai, Cheng-Hsuan Wu, Shang-Chieh Chien, Heng-Hsin Liu, Li-Jui Chen, Sheng-Kang Yu
  • Patent number: 12066761
    Abstract: In a method of inspecting an extreme ultraviolet (EUV) radiation source, during an idle mode, a borescope mounted on a fixture is inserted through a first opening into a chamber of the EUV radiation source. The borescope includes a connection cable attached at a first end to a camera. The fixture includes an extendible section mounted from a first side on a lead screw, and the camera of the borescope is mounted on a second side, opposite to the first side, of the extendible section. The extendible section is extended to move the camera inside the chamber of the EUV radiation source. One or more images are acquired by the camera from inside the chamber of the EUV radiation source at one or more viewing positions. The one or more acquired images are analyzed to determine an amount of tin debris deposited inside the chamber of the EUV radiation source.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chiao-Hua Cheng, Sheng-Kang Yu, Shang-Chieh Chien, Wei-Chun Yen, Heng-Hsin Liu, Ming-Hsun Tsai, Yu-Fa Lo, Li-Jui Chen, Wei-Shin Cheng, Cheng-Hsuan Wu, Cheng-Hao Lai, Yu-Kuang Sun, Yu-Huan Chen
  • Patent number: 12063734
    Abstract: The present disclosure is directed to a modularized vessel droplet generator assembly (MGDVA) including a droplet generator assembly (DGA). Under a normal operation, the liquid fuel moves along an operation pathway extending through the DGA to eject or discharge the liquid fuel (e.g., liquid tin) from a nozzle of the DGA into a vacuum chamber. The liquid fuel in the vacuum chamber is then exposed to a laser generating an extreme ultra-violet (EUV) light. Under a service operation, the operation pathway is closed and a service pathway extending through the DGA is opened. A gas is introduced into the service pathway forming a gas-liquid interface between the gas and the liquid fuel. The gas-liquid interface is driven to an isolation valve directly adjacent to the DGA. In other words, the gas pushes back the liquid fuel to the isolation valve. Once the gas-liquid interface reaches the isolation valve, the isolation valve is closed isolating the DGA from the liquid fuel.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: August 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuang Sun, Ming-Hsun Tsai, Wei-Shin Cheng, Cheng-Hao Lai, Hsin-Feng Chen, Chiao-Hua Cheng, Cheng-Hsuan Wu, Yu-Fa Lo, Jou-Hsuan Lu, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Patent number: 12055864
    Abstract: A photolithographic apparatus includes a droplet generator, a droplet generator maintenance system, and a controller communicating with the droplet generator maintenance system. The droplet generator maintenance system operatively communicates with the droplet generator, a coolant distribution unit, a gas supply unit, and a supporting member. The gas supply unit includes a heat exchange assembly and an air heating assembly. The coolant distribution unit is configured to control the temperature of the droplet generator within the acceptable droplet generator range.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: August 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Huan Chen, Cheng-Hsuan Wu, Ming-Hsun Tsai, Shang-Chieh Chien, Li-Jui Chen
  • Patent number: 11942585
    Abstract: An optoelectronic package structure and a method of manufacturing an optoelectronic package structure are provided. The optoelectronic package structure includes a photonic component. The photonic component has an electrical connection region, a blocking region and a region for accommodating a device. The blocking region is located between the electrical connection region and the region for accommodating a device.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: March 26, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Cheng-Hsuan Wu, Chang-Yu Lin, Yu-Sheng Huang
  • Publication number: 20240036261
    Abstract: A broadband ring resonator includes a first waveguide and a second waveguide. The first waveguide is a closed loop having a first coupling section having a first width and a first curvature radius. The second waveguide includes a first section, a second coupling section, and a second section which are connected in sequence. The second coupling section has a second width and a second curvature radius. Coupling ratios of the second waveguide coupled to the first waveguide within a broadband have a similarity to each other. A coupling angle is respectively between two ends of the first coupling section and between two ends of the second coupling section, and the first and second coupling sections are separated by a coupling gap. The second curvature radius is greater than the first curvature radius. A ratio of the first width with respect to the second width ranges from 1.3 to 1.7.
    Type: Application
    Filed: December 19, 2022
    Publication date: February 1, 2024
    Inventors: Yung-Jr HUNG, Cheng-Hsuan WU
  • Publication number: 20230375938
    Abstract: Impurities in a liquefied solid fuel utilized in a droplet generator of an extreme ultraviolet photolithography system are removed from vessels containing the liquefied solid fuel. Removal of the impurities increases the stability and predictability of droplet formation which positively impacts wafer yield and droplet generator lifetime.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 23, 2023
    Inventors: Cheng-Hao LAI, Ming-Hsun TSAI, Hsin-Feng CHEN, Wei-Shin CHENG, Yu-Kuang SUN, Cheng-Hsuan WU, Yu-Fa LO, Shih-Yu TU, Jou-Hsuan LU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Patent number: 11809083
    Abstract: Impurities in a liquefied solid fuel utilized in a droplet generator of an extreme ultraviolet photolithography system are removed from vessels containing the liquefied solid fuel. Removal of the impurities increases the stability and predictability of droplet formation which positively impacts wafer yield and droplet generator lifetime.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hao Lai, Ming-Hsun Tsai, Hsin-Feng Chen, Wei-Shin Cheng, Yu-Kuang Sun, Cheng-Hsuan Wu, Yu-Fa Lo, Shih-Yu Tu, Jou-Hsuan Lu, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20230345610
    Abstract: In order to prevent long down-time that occurs with unexpected material depletion, an Inline Tin Stream Monitor (ITSM) system precisely measures the tin amount introduced by an in-line refill system and precisely estimates remaining runtime by measuring pressure level changes before and after in-line refill.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Inventors: Yu-Kuang SUN, Ming-Hsun TSAI, Wei-Shin CHENG, Cheng-Hao LAI, Hsin-Feng CHEN, Chiao-Hua CHENG, Cheng Hsuan WU, Yu-Fa LO, Jou-Hsuan LU, Shang-Chieh CHIEN, Li-Jui CHEN, Heng-Hsin LIU
  • Patent number: 11774673
    Abstract: An optical communication package structure includes a wiring structure, at least one via structure, a redistribution structure, at least one optical device and at least one electrical device. The wiring structure includes a main portion and a conductive structure disposed on an upper surface of the main portion. The main portion defines at least one through hole extending through the main portion. The via structure is disposed in the at least one through hole of the main portion and electrically connected to the conductive structure. The redistribution structure is disposed on a lower surface of the main portion and electrically connected to the via structure. The optical device is disposed adjacent to the upper surface of the main portion and electrically connected to the conductive structure. The electrical device is disposed on and electrically connected to the conductive structure.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: October 3, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Cheng-Hsuan Wu, Yung-Hui Wang