Patents by Inventor CHENG HUNG WANG
CHENG HUNG WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240371881Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.Type: ApplicationFiled: July 10, 2024Publication date: November 7, 2024Inventors: Kuan-Jung CHEN, Tsung-Lin LEE, Chung-Ming LIN, Wen-Chih CHIANG, Cheng-Hung WANG
-
Publication number: 20240363495Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: ApplicationFiled: July 9, 2024Publication date: October 31, 2024Inventors: Kuan-Jung CHEN, Cheng-Hung WANG, Tsung-Lin LEE, Shiuan-Jeng LIN, Chun-Ming LIN, Wen-Chih CHIANG
-
Patent number: 12074169Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.Type: GrantFiled: July 28, 2022Date of Patent: August 27, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuan-Jung Chen, Tsung-Lin Lee, Chung-Ming Lin, Wen-Chih Chiang, Cheng-Hung Wang
-
Patent number: 12068227Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: GrantFiled: May 12, 2023Date of Patent: August 20, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
-
Publication number: 20240222197Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.Type: ApplicationFiled: March 19, 2024Publication date: July 4, 2024Inventors: Cheng-Hung WANG, Tsung-Lin LEE, Wen-Chih CHIANG, Kuan-Jung CHEN
-
Patent number: 11935795Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.Type: GrantFiled: July 28, 2022Date of Patent: March 19, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Cheng-Hung Wang, Tsung-Lin Lee, Wen-Chih Chiang, Kuan-Jung Chen
-
Patent number: 11894381Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.Type: GrantFiled: October 28, 2019Date of Patent: February 6, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuan-Jung Chen, Tsung-Lin Lee, Chung-Ming Lin, Wen-Chih Chiang, Cheng-Hung Wang
-
Publication number: 20230282552Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: ApplicationFiled: May 12, 2023Publication date: September 7, 2023Inventors: Kuan-Jung CHEN, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
-
Patent number: 11688666Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: GrantFiled: June 1, 2021Date of Patent: June 27, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
-
Patent number: 11508628Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.Type: GrantFiled: September 15, 2020Date of Patent: November 22, 2022Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Cheng-Hung Wang, Tsung-Lin Lee, Wen-Chih Chiang, Kuan-Jung Chen
-
Publication number: 20220367276Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.Type: ApplicationFiled: July 28, 2022Publication date: November 17, 2022Inventors: Cheng-Hung WANG, Tsung-Lin LEE, Wen-Chih CHIANG, Kuan-Jung CHEN
-
Publication number: 20220367523Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.Type: ApplicationFiled: July 28, 2022Publication date: November 17, 2022Inventors: Kuan-Jung CHEN, Tsung-Lin LEE, Chung-Ming LIN, Wen-Chih CHIANG, Cheng-Hung WANG
-
Publication number: 20220084887Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.Type: ApplicationFiled: September 15, 2020Publication date: March 17, 2022Inventors: Cheng-Hung WANG, Tsung-Lin Lee, Wen-Chih Chiang, Kuan-Jung Chen
-
Publication number: 20210287963Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: ApplicationFiled: June 1, 2021Publication date: September 16, 2021Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
-
Patent number: 11031320Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: GrantFiled: November 6, 2019Date of Patent: June 8, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
-
Publication number: 20200176359Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.Type: ApplicationFiled: November 6, 2019Publication date: June 4, 2020Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
-
Publication number: 20200161335Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.Type: ApplicationFiled: October 28, 2019Publication date: May 21, 2020Inventors: Kuan-Jung CHEN, Tsung-Lin LEE, Chung-Ming LIN, Wen-Chih CHIANG, Cheng-Hung WANG
-
Patent number: 10395997Abstract: The present disclosure relates to a semiconductor process, which includes: (a) providing a semiconductor element; (b) attaching the semiconductor element to a carrier by an adhesive layer, so that the adhesive layer is sandwiched between the semiconductor element and the carrier; and (c) cutting the semiconductor element to form a plurality of semiconductor units. Thereby, the gaps between the semiconductor units are fixed after the cutting process, so as to facilitate testing the semiconductor units.Type: GrantFiled: January 18, 2017Date of Patent: August 27, 2019Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.Inventors: Yu-Cheng Tsao, Cheng-Hung Wang, Chun-Chieh Lin, Hsiu-Hsiung Yang, Yu-Pin Tsai
-
Publication number: 20170125310Abstract: The present disclosure relates to a semiconductor process, which includes: (a) providing a semiconductor element; (b) attaching the semiconductor element to a carrier by an adhesive layer, so that the adhesive layer is sandwiched between the semiconductor element and the carrier; and (c) cutting the semiconductor element to form a plurality of semiconductor units. Thereby, the gaps between the semiconductor units are fixed after the cutting process, so as to facilitate testing the semiconductor units.Type: ApplicationFiled: January 18, 2017Publication date: May 4, 2017Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.Inventors: Yu-Cheng TSAO, Cheng-Hung WANG, Chun-Chieh LIN, Hsiu-Hsiung YANG, Yu-Pin TSAI
-
Patent number: 9564376Abstract: The present disclosure relates to a semiconductor process, which includes: (a) providing a semiconductor element; (b) attaching the semiconductor element to a carrier by an adhesive layer, so that the adhesive layer is sandwiched between the semiconductor element and the carrier; and (c) cutting the semiconductor element to form a plurality of semiconductor units. Thereby, the gaps between the semiconductor units are fixed after the cutting process, so as to facilitate testing the semiconductor units.Type: GrantFiled: September 23, 2014Date of Patent: February 7, 2017Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.Inventors: Yu-Cheng Tsao, Cheng-Hung Wang, Chun-Chieh Lin, Hsiu-Hsiung Yang, Yu-Pin Tsai