Patents by Inventor Cheng-Kuo Lin

Cheng-Kuo Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130334564
    Abstract: A monolithic compound semiconductor structure is disclosed. The monolithic compound semiconductor structure comprises a substrate, an n-type FET epitaxial structure, an n-type etching-stop layer, a p-type insertion layer, and an npn HBT epitaxial structure, and it can be used to form an FET, an HBT, or a thyristor.
    Type: Application
    Filed: October 26, 2012
    Publication date: December 19, 2013
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Cheng-Kuo LIN, Szu-Ju LI, Rong-Hao SYU, Shu-Hsiao TSAI
  • Publication number: 20130334570
    Abstract: An integrated structure of compound semiconductor devices is disclosed. The integrated structure comprises from bottom to top a substrate, a first epitaxial layer, an etching-stop layer, a second epitaxial layer, a sub-collector layer, a collector layer, a base layer, and an emitter layer, in which the first epitaxial layer is a p-type doped layer, the second epitaxial layer is an n-type graded doping layer with a gradually increased or decreased doping concentration, and the sub-collector layer is an n-type doped layer. The integrated structure can be used to form an HBT, a varactor, or an MESFET.
    Type: Application
    Filed: October 26, 2012
    Publication date: December 19, 2013
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Cheng-Kuo LIN, Szu-Ju LI, Rong-Hao SYU, Shu-Hsiao TSAI
  • Publication number: 20130320402
    Abstract: An improved pseudomorphic high electron mobility transistor (pHEMT) and heterojunction bipolar transistor (HBT) integrated epitaxial structure and the fabrication method thereof, in which the structure comprises a substrate, a pHEMT structure, an etching-stop spacer layer, and an HBT structure. The pHEMT's structure comprises a buffer layer, a barrier layer, a first channel spacer layer, a channel layer, a second channel spacer layer, a Schottky barrier layer, an etching-stop layer, and at least one cap layer. The fabrication method of an HBT and a pHEMT are also included.
    Type: Application
    Filed: October 26, 2012
    Publication date: December 5, 2013
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Shu-Hsiao TSAI, Cheng-Kuo LIN, Bing-Shan HONG, Shinichiro TAKATANI
  • Patent number: 7842591
    Abstract: A method of fabricating short-gate-length electrodes for integrated III-V compound semiconductor devices, particularly for integrated HBT/HEMT devices on a common substrate is disclosed. The method is based on dual-resist processes, wherein a first thin photo-resist layer is utilized for defining the gate dimension, while a second thicker photo-resist layer is used to obtain a better coverage on the surface for facilitating gate metal lift-off. The dual-resist method not only reduces the final gate length, but also mitigates the gate recess undercuts, as compared with those fabricated by the conventional single-resist processes. Furthermore, the dual-resist method of the present invention is also beneficial for the fabrication of multi-gate device with good gate-length uniformity.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 30, 2010
    Assignee: WIN Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Chia-Liang Chao, Ming-Chang Tu, Tsung-Chi Tsai, Yu-Chi Wang
  • Patent number: 7679870
    Abstract: An on-chip circuit for protection against electrostatic discharge (ESD) is disclosed. Unlike conventional ESD protection circuit using high turn-on voltage diode string, the circuit uses a plural of enhancement-mode HEMT/MESFET triggered by a shorter diode string to shunt large ESD current for protected susceptive RF circuit. Further, by using dual-gate technology of enhancement-mode HEMT/MESFET, the on-chip ESD protection circuit has the less parasitic capacitance without expanding device size for vulnerable RF circuit.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: March 16, 2010
    Assignee: Win Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Yu-Chi Wang, Joseph Liu, Jean Sun
  • Publication number: 20080220599
    Abstract: A method of fabricating short-gate-length electrodes for integrated III-V compound semiconductor devices, particularly for integrated HBT/HEMT devices on a common substrate is disclosed. The method is based on dual-resist processes, wherein a first thin photo-resist layer is utilized for defining the gate dimension, while a second thicker photo-resist layer is used to obtain a better coverage on the surface for facilitating gate metal lift-off. The dual-resist method not only reduces the final gate length, but also mitigates the gate recess undercuts, as compared with those fabricated by the conventional single-resist processes. Furthermore, the dual-resist method of the present invention is also beneficial for the fabrication of multi-gate device with good gate-length uniformity.
    Type: Application
    Filed: May 15, 2008
    Publication date: September 11, 2008
    Applicant: WIN Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Chia-Liang Chao, Ming-Chang Tu, Tsung-Chi Tsai, Yu-Chi Wang
  • Patent number: 7420417
    Abstract: A two-port dual-gate field-effect transistor for amplifier applications, wherein a self-bias circuit includes a number of passive elements, such as resistors, diodes and capacitors, is utilized to coupled the output of the amplifier with a second gate of the dual-gate device as a bias source, which transforms the conventional three-port cascade topology into a two-port dual-gate device so as to facilitate device testing, modeling, and packaging for discrete device application. The technology improves the RF performance in conventional two-port single-gate HEMT devices, with slight noise figure degradation.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: September 2, 2008
    Assignee: Win Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Wei-Der Chang, Yu-Chi Wang
  • Publication number: 20080080108
    Abstract: An on-chip circuit for protection against electrostatic discharge (ESD) is disclosed. Unlike conventional ESD protection circuit using high turn-on voltage diode string, the circuit uses a plural of enhancement-mode HEMT/MESFET triggered by a shorter diode string to shunt large ESD current for protected susceptive RF circuit. Further, by using dual-gate technology of enhancement-mode HEMT/MESFET, the on-chip ESD protection circuit has the less parasitic capacitance without expanding device size for vulnerable RF circuit.
    Type: Application
    Filed: October 2, 2006
    Publication date: April 3, 2008
    Inventors: Cheng-Kuo Lin, Yu-Chi Wang, Joseph Liu, Jean Sun
  • Publication number: 20070290762
    Abstract: A two-port dual-gate field-effect transistor for amplifier applications, wherein a self-bias circuit comprising a number of passive elements, such as resistors, diodes and capacitors, is utilized to coupled the output of the amplifier with a second gate of the dual-gate device as a bias source, which transforms the conventional three-port cascode topology into a two-port dual-gate device so as to facilitate device testing, modeling, and packaging for discrete device application. The technology is for improving the RF performance of conventional two-port single-gate HEMT device, with slightly noise figure degradation. This innovation doesn't require complicated RF testing and modeling as compared with conventional dual-gate devices. The two-port dual-gate device fits packaging molds of conventional two-port discrete device, hence the production line thereof can be easily extended to low noise amplifier and power amplifier applications.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 20, 2007
    Applicant: WIN Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Wei-Der Chang, Yu-Chi Wang