Patents by Inventor Cheng-Lung Hung

Cheng-Lung Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527621
    Abstract: A method includes depositing a first work function tuning layer over a gate dielectric layer using an atomic layer deposition process. The atomic layer deposition process comprises depositing one or more first nitride monolayers; and depositing one or more carbide monolayers over the one or more first nitride monolayers. The method further includes depositing an adhesion layer of the first work function tuning layer; and depositing a conductive material over the adhesion layer.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20220392998
    Abstract: A semiconductor device includes nanosheets between the source/drain regions, and a gate structure over the substrate and between the source/drain regions, the gate structure including a gate dielectric material around each of the nanosheets, a work function material around the gate dielectric material, a first capping material around the work function material, a second capping material around the first capping material, wherein the second capping material is thicker at a first location between the nanosheets than at a second location along a sidewall of the nanosheets, and a gate fill material over the second capping material.
    Type: Application
    Filed: July 29, 2021
    Publication date: December 8, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20220384267
    Abstract: A method of forming a semiconductor device includes forming a fin structure having a stack of alternating first semiconductor layers and second semiconductor layers over a substrate, the first semiconductor layers and the second semiconductor layers having different compositions, forming a dummy gate structure across the fin structure, forming gate spacers on opposite sidewalls of the dummy gate structure, respectively, removing the dummy gate structure to form a gate trench between the gate spacers, removing portions of the first semiconductor layers in the gate trench, such that the second semiconductor layers are suspended in the gate trench to serve as nanosheets, forming a first titanium nitride layer wrapping around the nanosheets, wherein an atomic ratio of titanium to nitrogen of the first titanium nitride layer is less than 1, and forming a metal fill layer over the first titanium nitride layer.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi LEE, Kuan-Yu WANG, Cheng-Lung HUNG, Chi-On CHUI
  • Publication number: 20220375798
    Abstract: A method includes depositing a first conductive layer over a gate dielectric layer; depositing a first work function tuning layer over the first conductive layer; selectively removing the first work function tuning layer from over a first region of the first conductive layer; doping the first work function tuning layer with a dopant; and after doping the first work function tuning layer performing a first treatment process to etch the first region of the first conductive layer and a second region of the first work function tuning layer. The first treatment process etches the first conductive layer at a greater rate than the first work function tuning layer.
    Type: Application
    Filed: August 5, 2022
    Publication date: November 24, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 11508826
    Abstract: A method includes forming a gate dielectric layer on a semiconductor region, and depositing a first aluminum-containing work function layer using a first aluminum-containing precursor. The first aluminum-containing work function layer is over the gate dielectric layer. A second aluminum-containing work function layer is deposited using a second aluminum-containing precursor, which is different from the first aluminum-containing precursor. The second aluminum-containing work function layer is deposited over the first aluminum-containing work function layer. A conductive region is formed over the second aluminum-containing work function layer.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20220367250
    Abstract: A method of forming a semiconductor device includes forming a first transistor and a second transistor on a substrate. The first transistor includes a first gate structure, and the second transistor includes a second gate structure. The first gate structure includes a first high-k layer, a first work function layer, an overlying work function layer, and a first capping layer sequentially formed on the substrate. The second gate structure comprising a second high-k layer, a second work function layer, and a second capping layer sequentially formed on the substrate. The first capping layer and the second capping layer comprise materials having higher resistant to oxygen or fluorine than materials of the second work function layer and the overlying work function layer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Da-Yuan Lee
  • Publication number: 20220367263
    Abstract: A method includes forming an opening in a dielectric layer, depositing a seed layer in the opening, wherein first portions of the seed layer have a first concentration of impurities, exposing the first portions of the seed layer to a plasma, wherein after exposure to the plasma the first portions have a second concentration of impurities that is less than the first concentration of impurities, and filling the opening with a conductive material to form a conductive feature. In an embodiment, the seed layer includes tungsten, and the conductive material includes tungsten. In an embodiment, the impurities include boron.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Chung-Chiang Wu, Hsueh Wen Tsau, Chia-Ching Lee, Cheng-Lung Hung, Ching-Hwanq Su
  • Patent number: 11502080
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20220359654
    Abstract: A semiconductor device including a barrier layer surrounding a work function metal layer and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a first channel region over the semiconductor substrate; a second channel region over the first channel region; gate dielectric layers surrounding the first channel region and the second channel region; work function metal layers surrounding the gate dielectric layers; and barrier layers surrounding the work function metal layers, a first barrier layer surrounding the first channel region being merged with a second barrier layer surrounding the second channel region.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Publication number: 20220359703
    Abstract: A method includes forming a gate dielectric layer on a semiconductor region, and depositing a first aluminum-containing work function layer using a first aluminum-containing precursor. The first aluminum-containing work function layer is over the gate dielectric layer. A second aluminum-containing work function layer is deposited using a second aluminum-containing precursor, which is different from the first aluminum-containing precursor. The second aluminum-containing work function layer is deposited over the first aluminum-containing work function layer. A conductive region is formed over the second aluminum-containing work function layer.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 11495661
    Abstract: A semiconductor device including a barrier layer surrounding a work function metal layer and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a semiconductor substrate; a first channel region over the semiconductor substrate; a second channel region over the first channel region; gate dielectric layers surrounding the first channel region and the second channel region; work function metal layers surrounding the gate dielectric layers; and barrier layers surrounding the work function metal layers, a first barrier layer surrounding the first channel region being merged with a second barrier layer surrounding the second channel region.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Publication number: 20220352336
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a first high-k gate dielectric around the first nanostructure; a second high-k gate dielectric around the second nanostructure; and a gate electrode over the first and second high-k gate dielectrics. A portion of the gate electrode between the first nanostructure and the second nanostructure comprises: a first p-type work function metal; a barrier material over the first p-type work function metal; and a second p-type work function metal over the barrier material, the barrier material physically separating the first p-type work function metal from the second p-type work function metal.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 3, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 11488873
    Abstract: A method includes depositing a first conductive layer over a gate dielectric layer; depositing a first work function tuning layer over the first conductive layer; selectively removing the first work function tuning layer from over a first region of the first conductive layer; doping the first work function tuning layer with a dopant; and after doping the first work function tuning layer performing a first treatment process to etch the first region of the first conductive layer and a second region of the first work function tuning layer. The first treatment process etches the first conductive layer at a greater rate than the first work function tuning layer.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 11489059
    Abstract: Semiconductor devices, FinFET devices and methods of forming the same are disclosed. One of the semiconductor devices includes a substrate and a gate strip disposed over the substrate. The gate strip includes a high-k layer disposed over the substrate, an N-type work function metal layer disposed over the high-k layer, and a barrier layer disposed over the N-type work function metal layer. The barrier layer includes at least one first film containing TiAlN, TaAlN or AlN.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Publication number: 20220336285
    Abstract: A method includes forming a gate dielectric on a semiconductor region, depositing a work-function layer over the gate dielectric, depositing a silicon layer over the work-function layer, and depositing a glue layer over the silicon layer. The work-function layer, the silicon layer, and the glue layer are in-situ deposited. The method further includes depositing a filling-metal over the glue layer; and performing a planarization process, wherein remaining portions of the glue layer, the silicon layer, and the work-function layer form portions of a gate electrode.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Hsin-Han Tsai, Chung-Chiang Wu, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Publication number: 20220336591
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a first high-k gate dielectric around the first nanostructure; a second high-k gate dielectric around the second nanostructure; and a gate electrode over the first and second high-k gate dielectrics. The gate electrode includes a first work function metal; a second work function metal over the first work function metal; and a first metal residue at an interface between the first work function metal and the second work function metal, wherein the first metal residue has a metal element that is different than a metal element of the first work function metal.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20220328319
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nano structure and a second portion on a bottom surface of the second nanostructure; and a gate electrode over the high-k gate dielectric. The gate electrode comprises: a first work function metal around the first nanostructure and the second nanostructure, the first work function metal filling a region between the first portion of the high-k gate dielectric and the second portion of the high-k gate dielectric; and a tungsten layer over the first work function metal, the tungsten layer being free of fluorine.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 13, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20220310451
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate, and recessing the isolation regions. After the recessing, a portion of a semiconductor material between the isolation region protrudes higher than top surfaces of the isolation regions to form a semiconductor fin. The method further includes forming a gate stack, which includes forming a gate dielectric on sidewalls and a top surface of the semiconductor fin, and depositing a titanium nitride layer over the gate dielectric as a work-function layer. The titanium nitride layer is deposited at a temperature in a range between about 300° C. and about 400° C. A source region and a drain region are formed on opposing sides of the gate stack.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 11450569
    Abstract: A method of forming a semiconductor device includes forming a fin structure having a stack of alternating first semiconductor layers and second semiconductor layers over a substrate, the first semiconductor layers and the second semiconductor layers having different compositions, forming a dummy gate structure across the fin structure, forming gate spacers on opposite sidewalls of the dummy gate structure, respectively, removing the dummy gate structure to form a gate trench between the gate spacers, removing portions of the first semiconductor layers in the gate trench, such that the second semiconductor layers are suspended in the gate trench to serve as nanosheets, forming a first titanium nitride layer wrapping around the nanosheets, wherein an atomic ratio of titanium to nitrogen of the first titanium nitride layer is less than 1, and forming a metal fill layer over the first titanium nitride layer.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Kuan-Yu Wang, Cheng-Lung Hung, Chi-On Chui
  • Publication number: 20220293731
    Abstract: An embodiment includes a device having nanostructures on a substrate, the nanostructures including a channel region. The device also includes a gate dielectric layer wrapping around each of the nanostructures. The device also includes a first work function tuning layer on the gate dielectric layer, the first work function tuning layer including a first n-type work function metal, aluminum, and carbon, the first n-type work function metal having a work function value less than titanium. The device also includes a glue layer on the first work function tuning layer. The device also includes and a fill layer on the glue layer.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 15, 2022
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui