Patents by Inventor Cheng T. Horng

Cheng T. Horng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8269292
    Abstract: A MTJ that minimizes spin-transfer magnetization switching current (Jc) in a Spin-RAM to <1×106 A/cm2 is disclosed. The MTJ has a Co60Fe20B20/MgO/Co60Fe20B20 configuration where the CoFeB AP1 pinned and free layers are amorphous and the crystalline MgO tunnel barrier is formed by a ROX or NOX process. The capping layer preferably is a Hf/Ru composite where the lower Hf layer serves as an excellent oxygen getter material to reduce the magnetic “dead layer” at the free layer/capping layer interface and thereby increase dR/R, and lower He and Jc. The annealing temperature is lowered to about 280° C. to give a smoother CoFeB/MgO interface and a smaller offset field than with a 350° C. annealing. In a second embodiment, the AP1 layer has a CoFeB/CoFe configuration wherein the lower CoFeB layer is amorphous and the upper CoFe layer is crystalline to further improve dR/R and lower RA to ?10 ohm/?m2.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: September 18, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20120181537
    Abstract: A MTJ in an MRAM array is disclosed with a composite free layer having a lower crystalline layer contacting a tunnel barrier and an upper amorphous NiFeX layer for improved bit switching performance. The crystalline layer is Fe, Ni, or FeB with a thickness of at least 6 Angstroms which affords a high magnetoresistive ratio. The X element in the NiFeX layer is Mg, Hf, Zr, Nb, or Ta with a content of 5 to 30 atomic %. NiFeX thickness is preferably between 20 to 40 Angstroms to substantially reduce bit line switching current and number of shorted bits. In an alternative embodiment, the crystalline layer may be a Fe/NiFe bilayer. Optionally, the amorphous layer may have a NiFeM1/NiFeM2 configuration where M1 and M2 are Mg, Hf, Zr, Nb, or Ta, and M1 is unequal to M2. Annealing at 300° C. to 360° C. provides a high magnetoresistive ratio of about 150%.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 19, 2012
    Inventors: Wei Cao, Cheng T. Horng, Witold Kula, Chyu Jiuh Torng
  • Publication number: 20120135273
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation process. A Co10Fe70B20/NCC/Co10Fe70B20, Co10Fe70B20/NCC/Co10Fe70B20/NCC, or Co10Fe70B20/NCC/Co10Fe70B20/NCC/Co10Fe70B20 free layer configuration where NCC is a nanocurrent channel layer made of Fe(20%)-SiO2 is used to minimize Jc0 while enabling higher thermal stability, write voltage, read voltage, Ho, and Hc values that satisfy 64 Mb design requirements. The NCC layer is about 10 Angstroms thick to match the minimum Fe(Si) grain diameter size. The MTJ is annealed with a temperature of about 330° C. to maintain a high magnetoresistive ratio while maximizing Hk?(interfacial) for the free layer thereby reducing Heff and lowering the switching current. The Co10Fe70B20 layers are sputter deposited with a low pressure process with a power of about 15 Watts and an Ar flow rate of 40 standard cubic centimeters per minute to lower Heff for the free layer.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Inventors: Cheng T. Horng, Ru-Ying Tong, Guenole Jan
  • Patent number: 8184411
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin composite seed layer made of at least Ta and a metal layer having fcc(111) or hcp(001) texture as in Ta/Ti/Cu to enhance perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (CoFe/Ni)x, (Co/NiFe)x, (Co/NiCo)x, (CoFe/NiFe)x, or (CoFe/NiCo)x composition where x is from 5 to 30. In one embodiment, a CPP-TMR spin valve has one or both of a laminated free layer and laminated reference layer with the aforementioned compositions. The MTJ includes an interfacial layer made of CoFeB, CoFeB/CoFe, or CoFe/CoFeB between each laminated structure and the tunnel barrier. The laminated layers are deposited by a low power and high Ar pressure process to avoid damaging interfaces between adjoining layers. Annealing occurs at 220° C. to 400° C. A laminated layer with high PMA may also be included in one or more layers of a spin transfer oscillator.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: May 22, 2012
    Assignees: Headway Technologies, Inc., MagIC Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Pokang Wang, Yuchen Zhou, Cheng T. Horng, Ru-Ying Tong
  • Patent number: 8176622
    Abstract: A process for manufacturing a high performance MTJ it is described: A first cap layer of NiFeHf is deposited on the free layer, followed by a second cap layer of Ru on Ta. The device is then heated so that oxygen trapped in the free layer diffuses into the NiFeHf layer, thereby sharpening the interface between the tunnel barrier layer and the free layer.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 15, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8138561
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by a NOX process, a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0, and a Ru capping layer to enhance the spin scattering effect and increase dR/R. Good write margin is achieved by modifying the NOX process to afford a RA less than 10 ohm-?m2 and good read margin is realized with a dR/R of >100% by annealing at 330° C. or higher to form crystalline CoFeB free layers. The NCC thickness is maintained in the 6 to 10 Angstrom range to reduce Rp and avoid Fe(Si) granules from not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A FeSiO layer may be inserted below the Ru layer in the capping layer to prevent the Ru from causing a high damping constant in the upper CoFeB free layer.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 20, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Po-Kang Wang, Robert Beach, Witold Kula
  • Publication number: 20120058575
    Abstract: A dual spin filter that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R in STT-RAM devices is disclosed. The bottom spin valve has a MgO tunnel barrier layer formed with a natural oxidation process to achieve low RA, a CoFe/Ru/CoFeB—CoFe pinned layer, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel (NCC) layer to minimize Jc0. The NCC layer may have be a composite wherein conductive M(Si) grains are magnetically coupled with adjacent ferromagnetic layers and are formed in an oxide, nitride, or oxynitride insulator matrix. The upper spin valve has a Cu spacer to lower the free layer damping constant. A high annealing temperature of 360° C. is used to increase the MR ratio above 100%. A Jc0 of less than 1×106 A/cm2 is expected based on quasistatic measurements of a MTJ with a similar MgO tunnel barrier and composite free layer.
    Type: Application
    Filed: November 4, 2011
    Publication date: March 8, 2012
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20120040207
    Abstract: A dual spin filter that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R in STT-RAM devices is disclosed. The bottom spin valve has a MgO tunnel barrier layer formed with a natural oxidation process to achieve low RA, a CoFe/Ru/CoFeB—CoFe pinned layer, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel (NCC) layer to minimize Jc0. The NCC layer may have be a composite wherein conductive M(Si) grains are magnetically coupled with adjacent ferromagnetic layers and are formed in an oxide, nitride, or oxynitride insulator matrix. The upper spin valve has a Cu spacer to lower the free layer damping constant. A high annealing temperature of 360° C. is used to increase the MR ratio above 100%. A Jc0 of less than 1×106 A/cm2 is expected based on quasistatic measurements of a MTJ with a similar MgO tunnel barrier and composite free layer.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 16, 2012
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 8080432
    Abstract: A method of forming a STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The device includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that comprises an amorphous layer of Co60Fe20B20. of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 20, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8058698
    Abstract: An STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The device includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that is an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer has a low Gilbert damping factor and a very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: November 15, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8057925
    Abstract: A dual spin filter that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R in STT-RAM devices is disclosed. The bottom spin valve has a MgO tunnel barrier layer formed with a natural oxidation process to achieve low RA, a CoFe/Ru/CoFeB—CoFe pinned layer, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel (NCC) layer to minimize Jc0. The NCC layer may have be a composite wherein conductive M(Si) grains are magnetically coupled with adjacent ferromagnetic layers and are formed in an oxide, nitride, or oxynitride insulator matrix. The upper spin valve has a Cu spacer to lower the free layer damping constant. A high annealing temperature of 360° C. is used to increase the MR ratio above 100%. A Jc0 of less than 1×106 A/cm2 is expected based on quasistatic measurements of a MTJ with a similar MgO tunnel barrier and composite free layer.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 15, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 7986497
    Abstract: The invention is a magnetoresistive read head with an MTJ configuration having an ultra-thin tunneling barrier layer with low resistance and high breakdown strength. The barrier layer is formed by natural oxidation of an ultra-thin (two atomic layers) Al or Hf—Al layer deposited on an electrode whose surface has first been treated to form an oxygen surfactant layer. The oxygen within the surfactant layer is first adsorbed within the ultra-thin layer and the layer is subsequently naturally oxidized to produce a uniform and stable Al2O3 stoichiometry (or HfO stoichiometry) in the tunneling barrier layer.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: July 26, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 7978440
    Abstract: Improved CPP GMR devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of NiCr on Ta, said seed being deposited on the NiFe layer that constitutes a magnetic shield. Additional improvement was also obtained by replacing the conventional non-magnetic spacer layer of copper with a sandwich structure of two copper layers with an NOL (nano-oxide layer) between them. A process for manufacturing the devices is also described.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Cheng T. Horng, Cherng Chyi Han, Yue Liu, Yu-Hsia Chen, Ru-Ying Tong
  • Publication number: 20110133300
    Abstract: A multi-layered bottom electrode for an MTJ device on a silicon nitride substrate is described. It comprises a bilayer of alpha tantalum on ruthenium which in turn lies on a nickel chrome layer over a second tantalum layer.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 9, 2011
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Patent number: 7948044
    Abstract: A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R is disclosed. The MTJ has a MgO tunnel barrier formed by natural oxidation to achieve a low RA, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0. There is a thin Ru capping layer for a spin scattering effect. The reference layer has a shape anisotropy and Hc substantially greater than that of the free layer to establish a “self-pinned” state. The free layer, capping layer and hard mask are formed in an upper section of a nanopillar that has an area substantially less than a lower pedestal section which includes a bottom electrode, reference layer, seed layer, and tunnel barrier layer. The reference layer is comprised of an enhanced damping constant material that may be an insertion layer, and the free layer has a low damping constant.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 24, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Yimin Guo
  • Patent number: 7936539
    Abstract: A bottom spin-valve GMR sensor has been fabricated that has ultra-thin layers of high density and smoothness. In addition, these layers are inherently furnished with sub-monolayer thick oxygen surfactant layers. The sensor is fabricated using a method in which the layers are sputtered in a mixture of Ar and O2. A particularly novel feature of the method is the use of a sputtering chamber with an ultra-low base pressure and correspondingly ultra-low pressure mixtures of Ar and O2 sputtering gas (<0.5 millitorr) in which the admixed oxygen has a partial pressure of less than 5×10?9 torr.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: May 3, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20110096443
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin composite seed layer made of at least Ta and a metal layer having fcc(111) or hcp(001) texture as in Ta/Ti/Cu to enhance perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (CoFe/Ni)X, (Co/NiFe)X, (Co/NiCo)X, (CoFe/NiFe)X, or (CoFe/NiCo)X composition where x is from 5 to 30. In one embodiment, a CPP-TMR spin valve has one or both of a laminated free layer and laminated reference layer with the aforementioned compositions. The MTJ includes an interfacial layer made of CoFeB, CoFeB/CoFe, or CoFe/CoFeB between each laminated structure and the tunnel barrier. The laminated layers are deposited by a low power and high Ar pressure process to avoid damaging interfaces between adjoining layers. Annealing occurs at 220° C. to 400° C. A laminated layer with high PMA may also be included in one or more layers of a spin transfer oscillator.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 28, 2011
    Inventors: Kunliang Zhang, Min Li, Pokang Wang, Yuchen Zhou, Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20110076785
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a protective coating that is partly consumed during etching of the alpha tantalum portion of said bottom electrode. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 31, 2011
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong
  • Publication number: 20110014500
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB/NCC/CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc0 while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.
    Type: Application
    Filed: July 17, 2009
    Publication date: January 20, 2011
    Inventors: Cheng T. Horng, Ru-Ying Tong, Guangli Liu, Robert Beach, Witold Kula, Tai Min
  • Patent number: 7838436
    Abstract: Formation of a bottom electrode for an MTJ device on a silicon nitride substrate is facilitated by including a layer of ruthenium near the silicon nitride surface. The ruthenium is a good electrical conductor and it responds differently from Ta and TaN to certain etchants. Adhesion to SiN is enhanced by using a TaN/NiCr bilayer as “glue”. Thus, said included layer of ruthenium may be used as an etch stop layer during the etching of Ta and/or TaN while the latter materials may be used to form a hard mask for etching the ruthenium without significant corrosion of the silicon nitride surface.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 23, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Rongfu Xiao, Cheng T. Horng, Ru-Ying Tong, Chyu-Jinh Torng, Tom Zhong, Witold Kula, Terry Kin Ting Ko, Wei Cao, Wai-Ming J. Kan, Liubo Hong