Patents by Inventor Cheng T. Horng

Cheng T. Horng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100258889
    Abstract: An STT-MTJ MRAM cell utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The cell includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a composite tri-layer free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 14, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Publication number: 20100258888
    Abstract: An STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The device includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that comprises an amorphous layer of Co60Fe20B20. of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 14, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Publication number: 20100261295
    Abstract: A method of forming a STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The device includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that comprises an amorphous layer of Co60Fe20B20.of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 14, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 7808027
    Abstract: An MTJ MRAM cell and its method of formation are described. The cell includes a composite free layer having the general form (Ni88Fe12)1-xCo100x—Ni92Fe8 with x between 0.05 and 0.1 that provides low magnetization and negative magnetostriction. The magnetostriction can be tuned to a low value by a multilayer capping layer that includes a positive magnetostriction layer of NiFeHf(15%). When this cell forms an MRAM array, it contributes to a TMR?26%, a TMR/Rp—cov?15.5 and a high AQF (array quality factor) for write operations.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 5, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20100176470
    Abstract: An MTJ MRAM cell and its method of formation are described. The cell includes a composite free layer having the general form (Ni88Fe12)1-xCo100x—Ni92Fe8 with x between 0.05 and 0.1 that provides low magnetization and negative magnetostriction. The magnetostriction can be tuned to a low value by a multilayer capping layer that includes a positive magnetostriction layer of NiFeHf(15%). When this cell forms an MRAM array, it contributes to a TMR?26%, a TMR/Rp—cov?15.5 and a high AQF (array quality factor) for write operations.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20100178715
    Abstract: An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 15, 2010
    Inventors: Po-Kang Wang, Yimin Guo, Cheng T. Horng, Tai Min, Ru-Ying Tong
  • Publication number: 20100176429
    Abstract: An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 15, 2010
    Inventors: Po-Kang Wang, Yimin Guo, Cheng T. Horng, Tai Min, Ru-Ying Tong
  • Patent number: 7750421
    Abstract: A STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively or on a single such layer. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: July 6, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Publication number: 20100136713
    Abstract: A high performance MTJ, and a process for manufacturing it, are described. A capping layer of NiFeHf is used to getter oxygen out of the free layer, thereby increasing the sharpness of the free layer-tunneling layer interface. The free layer comprises two NiFe layers whose magnetostriction constants are of opposite sign, thereby largely canceling one another.
    Type: Application
    Filed: January 27, 2010
    Publication date: June 3, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Publication number: 20100065935
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by a NOX process, a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0, and a Ru capping layer to enhance the spin scattering effect and increase dR/R. Good write margin is achieved by modifying the NOX process to afford a RA less than 10 ohm-?m2 and good read margin is realized with a dR/R of >100% by annealing at 330° C. or higher to form crystalline CoFeB free layers. The NCC thickness is maintained in the 6 to 10 Angstrom range to reduce Rp and avoid Fe(Si) granules from not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A FeSiO layer may be inserted below the Ru layer in the capping layer to prevent the Ru from causing a high damping constant in the upper CoFeB free layer.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Po-Kang Wang, Robert Beach, Witold Kula
  • Patent number: 7672093
    Abstract: A high performance MTJ, and a process for manufacturing it, are described. A capping layer of NiFeHf is used to getter oxygen out of the free layer, thereby increasing the sharpness of the free layer-tunneling layer interface. The free layer comprises two NiFe layers whose magnetostriction constants are of opposite sign, thereby largely canceling one another.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: March 2, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 7663131
    Abstract: A MTJ that minimizes error count (EC) while achieving high MR value, low magnetostriction, and a RA of about 1100 ?-?m2 for 1 Mbit MRAM devices is disclosed. The MTJ has a composite AP1 pinned layer made of a lower amorphous Co60Fe20B20 layer and an upper crystalline Co75Fe25 layer to promote a smoother and more uniform AlOx tunnel barrier. A “stronger oxidation” state is realized in the AlOx layer by depositing a thicker than normal Al layer or extending the ROX cycle time for Al oxidation and thereby reduces tunneling hot spots. The NiFe free layer has a low Fe content of about 8 to 21 atomic % and the Hf content in the NiFeHf capping layer is from 10 to 25 atomic %. A Ta hard mask is formed on the capping layer. EC (best) is reduced from >100 ppm to <10 ppm by using the preferred MTJ configuration.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: February 16, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Guangli Liu
  • Publication number: 20100009467
    Abstract: A MTJ that minimizes spin-transfer magnetization switching current (Jc) in a Spin-RAM to <1×106 A/cm2 is disclosed. The MTJ has a Co60Fe20B20/MgO/Co60Fe20B20 configuration where the CoFeB AP1 pinned and free layers are amorphous and the crystalline MgO tunnel barrier is formed by a ROX or NOX process. The capping layer preferably is a Hf/Ru composite where the lower Hf layer serves as an excellent oxygen getter material to reduce the magnetic “dead layer” at the free layer/capping layer interface and thereby increase dR/R, and lower He and Jc. The annealing temperature is lowered to about 280° C. to give a smoother CoFeB/MgO interface and a smaller offset field than with a 350° C. annealing. In a second embodiment, the AP1 layer has a CoFeB/CoFe configuration wherein the lower CoFeB layer is amorphous and the upper CoFe layer is crystalline to further improve dR/R and lower RA to ?10 ohm/?m2.
    Type: Application
    Filed: September 15, 2009
    Publication date: January 14, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20100006960
    Abstract: A MTJ that minimizes spin-transfer magnetization switching current (Jc) in a Spin-RAM to <1×106 A/cm2 is disclosed. The MTJ has a Co60Fe20B20/MgO/Co60Fe20B20 configuration where the CoFeB AP1 pinned and free layers are amorphous and the crystalline MgO tunnel barrier is formed by a ROX or NOX process. The capping layer preferably is a Hf/Ru composite where the lower Hf layer serves as an excellent oxygen getter material to reduce the magnetic “dead layer” at the free layer/capping layer interface and thereby increase dR/R, and lower He and Jc. The annealing temperature is lowered to about 280° C. to give a smoother CoFeB/MgO interface and a smaller offset field than with a 350° C. annealing. In a second embodiment, the AP1 layer has a CoFeB/CoFe configuration wherein the lower CoFeB layer is amorphous and the upper CoFe layer is crystalline to further improve dR/R and lower RA to ?10 ohm/?m2.
    Type: Application
    Filed: September 15, 2009
    Publication date: January 14, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20090325319
    Abstract: An MTJ in an MRAM array or TMR read head is disclosed in which a low magnetization capping layer is a composite having a NiFeHf inner layer formed on a NiFe or CoFeB/NiFe free layer, a Ta middle layer, and a Ru outer layer on the Ta layer. For example, a low magnetization NiFeHf layer is achieved by co-sputtering NiFe and Hf targets with a forward power of 400 W and 200 W, respectively. A higher Hf content increases the oxygen gettering power of the NiFeHf layer and the thickness is modified to change dR/R, RA, and magnetostriction values. A so-called dead layer between the free layer and capping layer is restored by incorporating a NiFeHf layer on the free layer to improve lattice matching. The Fe content in the NiFe target used to make the NiFeHf layer is preferably the same as in the NiFe free layer.
    Type: Application
    Filed: September 1, 2009
    Publication date: December 31, 2009
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 7630176
    Abstract: A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer and the sensor so formed. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: December 8, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Hui-Chuan Wang, Ru-Ying Tong, Chyu-Jiuh Torng
  • Publication number: 20090256220
    Abstract: A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R is disclosed. The MTJ has a MgO tunnel barrier formed by natural oxidation to achieve a low RA, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0. There is a thin Ru capping layer for a spin scattering effect. The reference layer has a shape anisotropy and Hc substantially greater than that of the free layer to establish a “self-pinned” state. The free layer, capping layer and hard mask are formed in an upper section of a nanopillar that has an area substantially less than a lower pedestal section which includes a bottom electrode, reference layer, seed layer, and tunnel barrier layer. The reference layer is comprised of an enhanced damping constant material that may be an insertion layer, and the free layer has a low damping constant.
    Type: Application
    Filed: April 9, 2008
    Publication date: October 15, 2009
    Inventors: Cheng T. Horng, Ru-Ying Tong, Yimin Guo
  • Patent number: 7598579
    Abstract: A MTJ that minimizes spin-transfer magnetization switching current (Jc) in a Spin-RAM to <1×106 A/cm2 is disclosed. The MTJ has a Co60Fe20B20/MgO/Co60Fe20B20 configuration where the CoFeB AP1 pinned and free layers are amorphous and the crystalline MgO tunnel barrier is formed by a ROX or NOX process. The capping layer preferably is a Hf/Ru composite where the lower Hf layer serves as an excellent oxygen getter material to reduce the magnetic “dead layer” at the free layer/capping layer interface and thereby increase dR/R, and lower He and Jc. The annealing temperature is lowered to about 280° C. to give a smoother CoFeB/MgO interface and a smaller offset field than with a 350° C. annealing. In a second embodiment, the AP1 layer has a CoFeB/CoFe configuration wherein the lower CoFeB layer is amorphous and the upper CoFe layer is crystalline to further improve dR/R and lower RA to ?10 ohm/?m2.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: October 6, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Publication number: 20090246557
    Abstract: A dual spin filter that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R in STT-RAM devices is disclosed. The bottom spin valve has a MgO tunnel barrier layer formed with a natural oxidation process to achieve low RA, a CoFe/Ru/CoFeB—CoFe pinned layer, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel (NCC) layer to minimize Jc0. The NCC layer may have be a composite wherein conductive M(Si) grains are magnetically coupled with adjacent ferromagnetic layers and are formed in an oxide, nitride, or oxynitride insulator matrix. The upper spin valve has a Cu spacer to lower the free layer damping constant. A high annealing temperature of 360° C. is used to increase the MR ratio above 100%. A Jc0 of less than 1×106 A/cm2 is expected based on quasistatic measurements of a MTJ with a similar MgO tunnel barrier and composite free layer.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 7595520
    Abstract: An MTJ in an MRAM array or TMR read head is disclosed in which a low magnetization capping layer is a composite having a NiFeHf inner layer formed on a NiFe or CoFeB/NiFe free layer, a Ta middle layer, and a Ru outer layer on the Ta layer. For example, a low magnetization NiFeHf layer is achieved by co-sputtering NiFe and Hf targets with a forward power of 400 W and 200 W, respectively. A higher Hf content increases the oxygen gettering power of the NiFeHf layer and the thickness is modified to change dR/R, RA, and magnetostriction values. A so-called dead layer between the free layer and capping layer is restored by incorporating a NiFeHf layer on the free layer to improve lattice matching. The Fe content in the NiFe target used to make the NiFeHf layer is preferably the same as in the NiFe free layer.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 29, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong