Patents by Inventor Cheng-ta Wu

Cheng-ta Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11264469
    Abstract: Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuo-Hwa Tzeng, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Publication number: 20220059364
    Abstract: In some embodiments, the present disclosure relates to a high-resistivity silicon-on-insulator (SOI) substrate, including a first polysilicon layer arranged over a semiconductor substrate. A second polysilicon layer is arranged over the first polysilicon layer, and a third polysilicon layer is arranged over the second polysilicon layer. An active semiconductor layer over an insulator layer may be arranged over the third polysilicon layer. The second polysilicon layer has an elevated concentration of oxygen compared to the first and third polysilicon layers.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Chen-Hao Chiang, Alexander Kalnitsky, Yeur-Luen Tu, Eugene Chen
  • Patent number: 11232974
    Abstract: Various embodiments of the present application are directed to a method for forming a semiconductor-on-insulator (SOI) device with an impurity competing layer to absorb potential contamination metal particles during an annealing process, and the SOI structure thereof. In some embodiments, an impurity competing layer is formed on the dummy substrate. An insulation layer is formed over a support substrate. A front side of the dummy wafer is bonded to the insulation layer. An annealing process is performed and the impurity competing layer absorbs metal from an upper portion of the dummy substrate. Then, a majority portion of the dummy substrate is removed including the impurity competing layer, leaving a device layer of the dummy substrate on the insulation layer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: January 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Pu-Fang Chen, Cheng-Ta Wu, Po-Jung Chiang, Ru-Liang Lee, Victor Y. Lu, Yen-Hsiu Chen, Yeur-Luen Tu, Yu-Lung Yeh, Shi-Chieh Lin
  • Publication number: 20210376075
    Abstract: A semiconductor-on-insulator (SOI) substrate includes a handle substrate, a charge-trapping layer located over the handle substrate and including nitrogen-doped polysilicon, an insulating layer located over the charge-trapping layer, and a semiconductor material layer located over the insulating layer. The nitrogen atoms in the charge-trapping layer suppress grain growth during anneal processes used to form the SOI substrate and during subsequent high temperature processes used to form semiconductor devices on the semiconductor material layer. Reduction in grain growth reduces distortion of the SOI substrate, and facilitates overlay of lithographic patterns during fabrication of the semiconductor devices. The charge-trapping layer suppresses formation of a parasitic surface conduction layer, and reduces capacitive coupling of the semiconductor devices with the handle substrate during high frequency operation such as operations in gigahertz range.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Inventors: Cheng-Ta WU, Chiu Hua CHEN
  • Patent number: 11171039
    Abstract: A composite semiconductor substrate includes a semiconductor substrate, an oxygen-doped crystalline semiconductor layer and an insulative layer. The oxygen-doped crystalline semiconductor layer is over the semiconductor substrate, and the oxygen-doped crystalline semiconductor layer includes a crystalline semiconductor material and a plurality of oxygen dopants. The insulative layer is over the oxygen-doped crystalline semiconductor layer.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Min-Ying Tsai, Cheng-Ta Wu, Yu-Hung Cheng, Yeur-Luen Tu
  • Patent number: 11171015
    Abstract: In some embodiments, the present disclosure relates to a high-resistivity silicon-on-insulator (SOI) substrate, including a first polysilicon layer arranged over a semiconductor substrate. A second polysilicon layer is arranged over the first polysilicon layer, and a third polysilicon layer is arranged over the second polysilicon layer. An active semiconductor layer over an insulator layer may be arranged over the third polysilicon layer. The second polysilicon layer has an elevated concentration of oxygen compared to the first and third polysilicon layers.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: November 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Chen-Hao Chiang, Alexander Kalnitsky, Yeur-Luen Tu, Eugene Chen
  • Patent number: 11164945
    Abstract: A silicon-on-insulator (SOI) substrate includes a semiconductor substrate and a multi-layered polycrystalline silicon structure. The multi-layered polycrystalline silicon structure is disposed over the semiconductor substrate. The multi-layered polycrystalline silicon structure includes a plurality of doped polycrystalline silicon layers stacked over one another, and an oxide layer between each adjacent pair of doped polycrystalline silicon layers. A number of the doped polycrystalline silicon layer is ranging from 2 to 6.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: November 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Cheng-Ta Wu, Kuo-Hwa Tzeng, Chih-Hao Wang, Yeur-Luen Tu, Chung-Yi Yu
  • Patent number: 11158534
    Abstract: The present disclosure, in some embodiments, relates to a silicon on insulator (SOI) substrate. The SOI substrate includes a dielectric layer disposed over a first substrate. The dielectric layer has an outside edge aligned with an outside edge of the first substrate. An active layer covers a first annular portion of an upper surface of the dielectric layer. The upper surface of the dielectric layer has a second annular portion that surrounds the first annular portion and extends to the outside edge of the dielectric layer. The second annular portion is uncovered by the active layer.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Ming-Che Yang, Wei-Kung Tsai, Yong-En Syu, Yeur-Luen Tu, Chris Chen
  • Publication number: 20210273106
    Abstract: Operations in fabricating a Fin FET include providing a substrate having a fin structure, where an upper portion of the fin structure has a first fin surface profile. An isolation region is formed on the substrate and in contact with the fin structure. A portion of the isolation region is recessed by an etch process to form a recessed portion and to expose the upper portion of the fin structure, where the recessed portion has a first isolation surface profile. A thermal hydrogen treatment is applied to the fin structure and the recessed portion. A gate dielectric layer is formed with a substantially uniform thickness over the fin structure, where the recessed portion is adjusted from the first isolation surface profile to a second isolation surface profile and the fin structure is adjusted from the first fin surface profile to a second fin surface profile, by the thermal hydrogen treatment.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Cheng-Ta WU, Cheng-Wei CHEN, Shiu-Ko JANGJIAN, Ting-Chun WANG
  • Patent number: 11094583
    Abstract: A method of making a device includes forming an opening in a dielectric layer to expose a conductive region in a substrate. The method further includes depositing a conformal layer of dopant material along sidewalls of the opening and along a top surface of the dielectric layer. The method further includes diffusing the dopant from the conformal layer of dopant material into the dielectric layer using an anneal process.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chii-Ming Wu, Cheng-Ta Wu
  • Patent number: 11063117
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a supporting substrate. The semiconductor device structure also includes a first carrier-trapping layer covering the supporting substrate. The first carrier-trapping layer is doped with a group-IV dopant. The semiconductor device structure further includes an insulating layer covering the first carrier-trapping layer. In addition, the semiconductor device structure includes a semiconductor substrate over the insulating layer. The semiconductor device structure also includes a transistor. The transistor includes a gate stack over the semiconductor substrate and source and drain structures in the semiconductor substrate.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hung Cheng, Yong-En Syu, Kuo-Hwa Tzeng, Ke-Dian Wu, Cheng-Ta Wu, Yeur-Luen Tu, Ming-Che Yang, Wei-Kung Tsai
  • Publication number: 20210202301
    Abstract: A method includes forming a first trench in a semiconductor substrate. A mask is filled in the first trench and over the semiconductor substrate. After filling the mask in the first trench, the mask is patterned to form an opening in the mask. A second trench is formed in the semiconductor substrate. A depth of the second trench is different from a depth of the first trench. After forming the second trench in the semiconductor substrate, the mask is removed. A dielectric material is filled in both the first and second trenches.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ta WU, Chii-Ming WU, Sen-Hong SYUE, Cheng-Po CHAU
  • Patent number: 11024716
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes: a substrate; a fin structure, disposed over the substrate; a gate structure, disposed over the substrate and covering a portion of the fin structure; a first sidewall, disposed over the substrate and surrounding a lower portion of the gate structure; and a second sidewall, disposed over the first sidewall and directly surrounding an upper portion of the gate structure, wherein the first sidewall is orthogonal to the second sidewall.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: June 1, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Cheng-Ta Wu, Yi-Hsien Lee, Wei-Ming You, Ting-Chun Wang
  • Patent number: 11011641
    Abstract: Operations in fabricating a Fin FET include providing a substrate having a fin structure, where an upper portion of the fin structure has a first fin surface profile. An isolation region is formed on the substrate and in contact with the fin structure. A portion of the isolation region is recessed by an etch process to form a recessed portion and to expose the upper portion of the fin structure, where the recessed portion has a first isolation surface profile. A thermal hydrogen treatment is applied to the fin structure and the recessed portion. A gate dielectric layer is formed with a substantially uniform thickness over the fin structure, where the recessed portion is adjusted from the first isolation surface profile to a second isolation surface profile and the fin structure is adjusted from the first fin surface profile to a second fin surface profile, by the thermal hydrogen treatment.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ta Wu, Cheng-Wei Chen, Shiu-Ko Jangjian, Ting-Chun Wang
  • Publication number: 20210126089
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a semiconductor device, a polysilicon isolation structure, and a first and second insulator liner. The semiconductor device is disposed on a frontside of a substrate. The polysilicon isolation structure continuously surrounds the semiconductor device and extends from the frontside of the substrate towards a backside of the substrate. The first insulator liner and second insulator liner respectively surround a first outermost sidewall and a second outermost sidewall of the polysilicon isolation structure. The substrate includes a monocrystalline facet arranged between the first and second insulator liners. A top of the monocrystalline facet is above bottommost surfaces of the polysilicon isolation structure, the first insulator liner, and the second insulator liner.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 29, 2021
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Po-Wei Liu, Yeur-Luen Tu, Yu-Chun Chang
  • Publication number: 20210098253
    Abstract: Various embodiments of the present application are directed towards a method for forming a semiconductor-on-insulator (SOI) substrate with a thick device layer and a thick insulator layer. In some embodiments, the method includes forming an insulator layer covering a handle substrate, and epitaxially forming a device layer on a sacrificial substrate. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates, and the sacrificial substrate is removed. The removal includes performing an etch into the sacrificial substrate until the device layer is reached. Because the device layer is formed by epitaxy and transferred to the handle substrate, the device layer may be formed with a large thickness. Further, because the epitaxy is not affected by the thickness of the insulator layer, the insulator layer may be formed with a large thickness.
    Type: Application
    Filed: July 30, 2020
    Publication date: April 1, 2021
    Inventors: Cheng-Ta Wu, Chia-Ta Hsieh, Kuo Wei Wu, Yu-Chun Chang, Ying Ling Tseng
  • Publication number: 20210098281
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a semiconductor structure. The method includes forming a plurality of bulk micro defects within a handle substrate. Sizes of the plurality of bulk micro defects are increased to form a plurality of bulk macro defects (BMDs) within the handle substrate. Some of the plurality of BMDs are removed from within a first denuded region and a second denuded region arranged along opposing surfaces of the handle substrate. An insulating layer is formed onto the handle substrate. A device layer comprising a semiconductor material is formed onto the insulating layer. The first denuded region and the second denuded region vertically surround a central region of the handle substrate that has a higher concentration of the plurality of BMDs than both the first denuded region and the second denuded region.
    Type: Application
    Filed: March 9, 2020
    Publication date: April 1, 2021
    Inventors: Cheng-Ta Wu, Kuan-Liang Liu
  • Patent number: 10950490
    Abstract: A semiconductor structure includes a semiconductor substrate, a first fin, a second fin, a first isolation structure, and a second isolation structure. The semiconductor substrate has a memory device region and a logic core region. The first fin is in the memory device region of the semiconductor substrate. The second fin is in the logic core region of the semiconductor substrate. The first isolation structure is around the first fin. The second isolation structure is around the second fin, and a thickness of the first isolation structure is different from a thickness of the second isolation structure.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Sen-Hong Syue, Cheng-Po Chau
  • Publication number: 20210074551
    Abstract: In some embodiments, the present disclosure relates to a high-resistivity silicon-on-insulator (SOI) substrate, including a first polysilicon layer arranged over a semiconductor substrate. A second polysilicon layer is arranged over the first polysilicon layer, and a third polysilicon layer is arranged over the second polysilicon layer. An active semiconductor layer over an insulator layer may be arranged over the third polysilicon layer. The second polysilicon layer has an elevated concentration of oxygen compared to the first and third polysilicon layers.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Inventors: Yu-Hung Cheng, Cheng-Ta Wu, Chen-Hao Chiang, Alexander Kalnitsky, Yeur-Luen Tu, Eugene Chen
  • Publication number: 20210066378
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a first through substrate via (TSV) disposed within a semiconductor substrate. The semiconductor substrate has a front-side surface and a back-side surface respectively on opposite sides of the semiconductor substrate. The semiconductor substrate comprises a first doped channel region extending from the front-side surface to the back-side surface. The first TSV is defined at least by the first doped channel region. A conductive contact overlies the back-side surface of the semiconductor substrate and comprises a first conductive layer overlying the first TSV. The first conductive layer comprises a conductive material. An upper conductive layer underlies the conductive contact. An upper surface of the upper conductive layer is aligned with the back-side surface of the semiconductor substrate. The upper conductive layer comprises a silicide of the conductive material.
    Type: Application
    Filed: December 23, 2019
    Publication date: March 4, 2021
    Inventors: Min-Ying Tsai, Cheng-Ta Wu, Yeur-Luen Tu