Patents by Inventor Cheng-Ting Tsai

Cheng-Ting Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10535644
    Abstract: A manufacturing method of a package on package structure includes the following steps. A first package is provided on a tape carrier, wherein the first package includes an encapsulated semiconductor device, a first redistribution structure disposed on a first side of the encapsulated semiconductor device, and a plurality of conductive bumps disposed on the first redistribution structure and attached to the tape carrier. A second package is mounted on the first package through a plurality of electrical terminals by a thermo-compression bonding process, which deforms the conductive bumps into a plurality of deformed conductive bumps. Each of the deformed conductive bumps comprises a base portion connecting the first redistribution structure and a tip portion connecting the base portion, and a curvature of the base portion is substantially smaller than a curvature of the tip portion.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsuan-Ting Kuo, Ching-Hua Hsieh, Cheng-Ting Chen, Hsiu-Jen Lin, Hao-Jan Pei, Yu-Peng Tsai, Chia-Lun Chang, Chih-Chiang Tsao, Philip Yu-shuan Chung
  • Publication number: 20200006308
    Abstract: A manufacturing method of a package on package structure includes the following steps. A first package is provided on a tape carrier, wherein the first package includes an encapsulated semiconductor device, a first redistribution structure disposed on a first side of the encapsulated semiconductor device, and a plurality of conductive bumps disposed on the first redistribution structure and attached to the tape carrier. A second package is mounted on the first package through a plurality of electrical terminals by a thermo-compression bonding process, which deforms the conductive bumps into a plurality of deformed conductive bumps. Each of the deformed conductive bumps comprises a base portion connecting the first redistribution structure and a tip portion connecting the base portion, and a curvature of the base portion is substantially smaller than a curvature of the tip portion.
    Type: Application
    Filed: August 9, 2018
    Publication date: January 2, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsuan-Ting Kuo, Ching-Hua Hsieh, Cheng-Ting Chen, Hsiu-Jen Lin, Hao-Jan Pei, Yu-Peng Tsai, Chia-Lun Chang, Chih-Chiang Tsao, Philip Yu-shuan Chung
  • Publication number: 20190391687
    Abstract: A sensing unit in the touch panel includes a first electrode formed in a first film and a second electrode formed in a second film. The first electrode includes multiple extending portions and at least one connecting portion. The extending portions extend along a first direction. The connecting portion extends along a second direction which is different from the first direction. The extending portions are spaced from each other by a distance along the second direction, and the connecting portion connects the extending portions. The second electrode includes a circular pad having an opening. The extending portions at least partially overlap with the circular pad, and the connecting portion is formed in an area overlapping with the opening.
    Type: Application
    Filed: October 5, 2018
    Publication date: December 26, 2019
    Inventors: Cheng-Hung TSAI, Ying-Zhuan LIU, Xue-Xia CAI, Yuan-Ting CHEN, Jui-Ni LI, Wai-Pan WU, Shen-Feng TAI
  • Patent number: 10510664
    Abstract: A semiconductor device and methods of formation are provided. A semiconductor device includes an annealed cobalt plug over a silicide in a first opening of the semiconductor device, wherein the annealed cobalt plug has a repaired lattice structure. The annealed cobalt plug is formed by annealing a cobalt plug at a first temperature for a first duration, while exposing the cobalt plug to a first gas. The repaired lattice structure of the annealed cobalt plug is more regular or homogenized as compared to a cobalt plug that is not so annealed, such that the annealed cobalt plug has a relatively increased conductivity or reduced resistivity.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hong-Mao Lee, Huicheng Chang, Chia-Han Lai, Chi-Hsuan Ni, Cheng-Tung Lin, Huang-Yi Huang, Chi-Yuan Chen, Li-Ting Wang, Teng-Chun Tsai, Wei-Jung Lin
  • Patent number: 10505014
    Abstract: According to an exemplary embodiment, a method of forming a vertical device is provided. The method includes: providing a protrusion over a substrate; forming an etch stop layer over the protrusion; laterally etching a sidewall of the etch stop layer; forming an insulating layer over the etch stop layer; forming a film layer over the insulating layer and the etch stop layer; performing chemical mechanical polishing on the film layer and exposing the etch stop layer; etching a portion of the etch stop layer to expose a top surface of the protrusion; forming an oxide layer over the protrusion and the film layer; and performing chemical mechanical polishing on the oxide layer and exposing the film layer.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: De-Fang Chen, Teng-Chun Tsai, Cheng-Tung Lin, Li-Ting Wang, Chun-Hung Lee, Ming-Ching Chang, Huan-Just Lin
  • Patent number: 10504789
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 10505107
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) device. The RRAM device includes a lower electrode over a conductive interconnect, and an upper electrode over the lower electrode. A data storage structure is disposed between the lower electrode and the upper electrode. The data storage structure includes a plurality of metal oxide layers having one or more metals from a first group of metals. A concentration of the one or more metals from the first group of metals changes as a distance from the lower electrode increases.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Publication number: 20190371675
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20190371999
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode over a substrate. A data storage layer is over the bottom electrode and has a first thickness. A capping layer is over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 1.9 and approximately 3 times thicker than the first thickness. A top electrode is over the capping layer.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Publication number: 20190371237
    Abstract: A display may have an array of organic light-emitting diode display pixels operating at a low refresh rate. Each display pixel may include a drive transistor coupled in series with one or more emission transistors and a respective organic light-emitting diode (OLED). A semiconducting-oxide transistor may be coupled between a drain terminal and a gate terminal of the drive transistor to help reduce leakage during low-refresh-rate display operations. A silicon transistor may be further interposed between the semiconducting-oxide transistor and the gate terminal of the drive transistor. One or more capacitor structures may be coupled to the source terminal and/or the drain terminal of the semiconducting-oxide transistor to reduce rebalancing current that might flow through the semiconducting-oxide transistor as it is turned off. Configured in this way, any emission current flowing through the OLED will be insensitive to any potential drift in the threshold voltage of the semiconducting-oxide transistor.
    Type: Application
    Filed: January 23, 2019
    Publication date: December 5, 2019
    Inventors: Chuang Qian, Tsung-Ting Tsai, Cheng-Chih Hsieh, Shyuan Yang, Ting-Kuo Chang, Abbas Jamshidi Roudbari, Shih Chang Chang
  • Patent number: 10490128
    Abstract: A display may have an array of organic light-emitting diode display pixels operating at a low refresh rate. Each display pixel may include a drive transistor coupled in series with one or more emission transistors and a respective organic light-emitting diode (OLED). A semiconducting-oxide transistor may be coupled between a drain terminal and a gate terminal of the drive transistor to help reduce leakage during low-refresh-rate display operations. A silicon transistor may be further interposed between the semiconducting-oxide transistor and the gate terminal of the drive transistor. One or more capacitor structures may be coupled to the source terminal and/or the drain terminal of the semiconducting-oxide transistor to reduce rebalancing current that might flow through the semiconducting-oxide transistor as it is turned off. Configured in this way, any emission current flowing through the OLED will be insensitive to any potential drift in the threshold voltage of the semiconducting-oxide transistor.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: Chuang Qian, Tsung-Ting Tsai, Cheng-Chih Hsieh, Shyuan Yang, Ting-Kuo Chang, Abbas Jamshidi Roudbari, Shih Chang Chang
  • Patent number: 10436580
    Abstract: A surface measurement system is configured to measure a sample with a low reflectivity surface. The surface measurement system includes a condensation device and a measurement device. The condensation device is configured to form a liquid layer on the surface of the sample. The condensation device includes a chamber, a temperature controlling gas source, and a humidification gas source. The chamber is configured to accommodate the sample. The temperature controlling gas source is connected to the chamber to provide temperature controlling gases to the chamber, so as to control the temperature of the sample. The humidification gas source is connected to the chamber to provide water vapor to the chamber, so as to form the liquid layer on the surface of the sample. The measurement device includes a plate, a light source, and an image capturing device.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 8, 2019
    Assignee: CHROMA ATE INC.
    Inventors: Yi-Chang Chiu, Cheng-Ting Tsai, Shih-Yao Pan, Lan-Sheng Yang, Hsiu-Wei Kuo, Shao-En Chung
  • Patent number: 10418271
    Abstract: According to an exemplary embodiment, a method of forming an isolation layer is provided. The method includes the following operations: providing a substrate; providing a vertical structure having a first layer over the substrate; providing a first interlayer dielectric over the first layer; performing CMP on the first interlayer dielectric; and etching back the first interlayer dielectric and the first layer to form the isolation layer corresponding to a source of the vertical structure.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: September 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Teng-Chun Tsai, Li-Ting Wang, De-Fang Chen, Cheng-Tung Lin, Chih-Tang Peng, Chien-Hsun Wang, Bing-Hung Chen, Huan-Just Lin, Yung-Cheng Lu
  • Patent number: 10411646
    Abstract: A method for inspecting a solar cell and configured to inspect a peeling state of a three-dimensional pattern of the solar cell includes obliquely illuminating the three-dimensional pattern of the solar cell using a light beam. An image of the solar cell is normally captured. An intensity of the light beam is increased to increase a contrast between the three-dimensional pattern and a shadow of the three-dimensional pattern in the image and increase a contrast between an ink pattern of the solar cell and the shadow in the image to overexpose the ink pattern in the image. Determine if the three-dimensional pattern is peeling according to the shadow of the three-dimensional pattern in the image.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: September 10, 2019
    Assignee: CHROMA ATE INC.
    Inventors: Cheng-Ting Tsai, Lan-Sheng Yang
  • Publication number: 20190259799
    Abstract: An image sensor includes a sensor portion and an ASIC portion bonded to the sensor portion. The sensor portion includes a first substrate having radiation-sensing pixels, a first interconnect structure, a first isolation layer, and a first dielectric layer. The ASIC portion includes a second substrate, a second isolation layer, and a second dielectric layer. The material compositions of the first and second isolation layers and the first and second dielectric layers are configured such that the first and second isolation layers may serve as barrier layers to prevent copper diffusion into oxide. The first and second isolation layers may also serve as etching-stop layers in the formation of the image sensor.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: U-Ting Chen, Shu-Ting Tsai, Cheng-Ying Ho, Tzu-Hsuan Hsu, Shih-Pei Chou
  • Patent number: 10388865
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode disposed over a lower interconnect layer and a data storage layer having a first thickness over the bottom electrode. A capping layer is disposed over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 2 and approximately 3 times thicker than the first thickness. A top electrode is disposed over the capping layer and an upper interconnect layer is disposed over the top electrode.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Publication number: 20190229118
    Abstract: A semiconductor device includes a first vertical device having a first threshold and second vertical device having a second threshold. The first vertical device includes a first source; a first channel over the first source; a first drain over the first channel; a first conductive layer adjacent to the first channel; and a first gate adjacent to the first conductive layer. The second vertical device includes a second source; a second channel over the second source; a second drain over the second channel; a second conductive layer adjacent to the second channel; and a second gate adjacent to the second conductive layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: July 25, 2019
    Inventors: Li-Ting WANG, Teng-Chun TSAI, Cheng-Tung LIN, De-Fang CHEN, Hui-Cheng CHANG
  • Publication number: 20190221639
    Abstract: A method for fabrication a nanosheet device includes providing forming a stacked layer on a substrate, having first material layers and second material layers in different materials, alternatingly stacked up. The stacked layer is patterned to a stacked fin. A dummy stack is formed on the stacked fin. An etching back process is performed with the dummy stack with spacers to etch the stacked fin and expose the substrate. Laterally etches the first material layers and the second material layers, to have indent portions. Inner spacers fill the indent portions. A first/second source/drain layer is formed on the substrate at both sides of the dummy stack. Etching process is performed to remove the dummy gate of the dummy stack and the selected one of the first material layers and the second material layers between the inner spacers. Metal layer fills between the spacers and the inner spacers.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Kuan-Hao Tseng, Yu-Hsiang Lin, Shih-Hung Tsai, Po-Kuang Hsieh, Yu-Ting Tseng, Chueh-Fei Tai, Cheng-Ping Kuo
  • Patent number: 10331847
    Abstract: An automated electronic component footprint setup system and a method thereof are provided in the present disclosure. The system is available to not only an external first user for configuring characteristic parameters of an electronic component for the database but also an external second user for configuring setup parameters of an electronic component footprint to be created. Then, the system is to create an electronic component footprint of a specific electronic layout system according to the characteristic parameters of the electronic component, component setup regulations and the setup parameters, all of which correspond to the electronic component footprint.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 25, 2019
    Assignee: FOOTPRINTKU INC.
    Inventors: Cheng-Ta Lu, Yu-Siang Fan Jiang, Jiun-Huei Ho, Chun-Chieh Tsai, Yi-Ting Chen
  • Patent number: 10325994
    Abstract: According to an exemplary embodiment, a method of forming a vertical structure with at least two barrier layers is provided. The method includes the following operations: providing a substrate; providing a vertical structure over the substrate; providing a first barrier layer over a source, a channel, and a drain of the vertical structure; and providing a second barrier layer over a gate and the drain of the vertical structure.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: June 18, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Tang Peng, Tai-Chun Huang, Teng-Chun Tsai, Cheng-Tung Lin, De-Fang Chen, Li-Ting Wang, Chien-Hsun Wang, Huan-Just Lin, Yung-Cheng Lu, Tze-Liang Lee