Patents by Inventor Cheng-Yi Hsieh

Cheng-Yi Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145421
    Abstract: Provided are a passivation layer for forming a semiconductor bonding structure, a sputtering target making the same, a semiconductor bonding structure and a semiconductor bonding process. The passivation layer is formed on a bonding substrate by sputtering the sputtering target; the passivation layer and the sputtering target comprise a first metal, a second metal or a combination thereof. The bonding substrate comprises a third metal. Based on a total atom number of the surface of the passivation layer, O content of the surface of the passivation layer is less than 30 at %; the third metal content of the surface of the passivation layer is less than or equal to 10 at %. The passivation layer has a polycrystalline structure. The semiconductor bonding structure sequentially comprises a first bonding substrate, a bonding layer and a second bonding substrate: the bonding layer is mainly formed by the passivation layer and the third metal.
    Type: Application
    Filed: October 27, 2023
    Publication date: May 2, 2024
    Inventors: Kuan-Neng CHEN, Zhong-Jie HONG, Chih-I CHO, Ming-Wei WENG, Chih-Han CHEN, Chiao-Yen WANG, Ying-Chan HUNG, Hong-Yi WU, CHENG-YEN HSIEH
  • Publication number: 20240143560
    Abstract: The various embodiments described herein include methods, devices, and systems for reading and writing data from a database table. In one aspect, a method includes: (1) initiating a read transaction to read from a first non-key column of a row in the database table, the database table having a plurality of rows, each row comprising a primary key and a plurality of non-key columns, the initiating including: (a) determining that a write transaction holds a lock on a second non-key column of the row in the database table, and (b) determining that no lock is held on the first non-key column; and (2) in response, concurrently reading data from the first non-key column and writing a new column value to the second non-key column; where each non-key column includes a last-write timestamp that indicates when the last write occurred for the respective non-key column.
    Type: Application
    Filed: December 21, 2023
    Publication date: May 2, 2024
    Inventors: Wilson Cheng-Yi Hsieh, Alexander Lloyd, Eric Hugh Veach
  • Patent number: 11953938
    Abstract: The present technology proposes techniques for generating globally coherent timestamps. This technology may allow distributed systems to causally order transactions without incurring various types of communication delays inherent in explicit synchronization. By globally deploying a number of time masters that are based on various types of time references, the time masters may serve as primary time references. Through an interactive interface, the techniques may track, calculate and record data relative to each time master thus providing the distributed systems with causal timestamps.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: April 9, 2024
    Assignee: Google LLC
    Inventors: Peter Hochschild, Alexander Lloyd, Wilson Cheng-Yi Hsieh, Robert Edman Felderman, Michael James Boyer Epstein
  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20240113071
    Abstract: An integrated circuit package including electrically floating metal lines and a method of forming are provided. The integrated circuit package may include integrated circuit dies, an encapsulant around the integrated circuit dies, a redistribution structure on the encapsulant, a first electrically floating metal line disposed on the redistribution structure, a first electrical component connected to the redistribution structure, and an underfill between the first electrical component and the redistribution structure. A first opening in the underfill may expose a top surface of the first electrically floating metal line.
    Type: Application
    Filed: January 5, 2023
    Publication date: April 4, 2024
    Inventors: Chung-Shi Liu, Mao-Yen Chang, Yu-Chia Lai, Kuo-Lung Pan, Hao-Yi Tsai, Ching-Hua Hsieh, Hsiu-Jen Lin, Po-Yuan Teng, Cheng-Chieh Wu, Jen-Chun Liao
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11942451
    Abstract: A semiconductor structure includes a functional die, a dummy die, a redistribution structure, a seal ring and an alignment mark. The dummy die is electrically isolated from the functional die. The redistribution structure is disposed over and electrically connected to the functional die. The seal ring is disposed over the dummy die. The alignment mark is between the seal ring and the redistribution structure, wherein the alignment mark is electrically isolated from the dummy die, the redistribution structure and the seal ring. The insulating layer encapsulates the functional die and the dummy die.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mao-Yen Chang, Yu-Chia Lai, Cheng-Shiuan Wong, Ting Hao Kuo, Ching-Hua Hsieh, Hao-Yi Tsai, Kuo-Lung Pan, Hsiu-Jen Lin
  • Patent number: 11943643
    Abstract: An access point (AP) and a station (STA) communicate with each other, with the AP indicating to the STA either or both of a preamble detection (PD) channel and a signaling (SIG) content channel and with the STA being initially monitoring a primary frequency segment of a plurality of frequency segments in an operating bandwidth of the AP. A downlink (DL) or triggered uplink (UL) communication is performed between the AP and the STA during a transmission opportunity (TXOP) such that: (i) during the TXOP, the STA monitors a preamble on the PD channel and decodes a SIG content on the SIG content channel; and (ii) after an end of the TXOP, the STA switches to the primary frequency segment.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: March 26, 2024
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Kai Ying Lu, Yongho Seok, Hung-Tao Hsieh, Cheng-Yi Chang, James Chih-Shi Yee, Jianhan Liu, Po-Yuen Cheng
  • Patent number: 11935878
    Abstract: A method for manufacturing a package structure includes providing a carrier board; providing at least one die having a top surface, a bottom surface, and a side surface on the carrier board; and forming a protective layer to cover at least a portion of the side surface of the die. The die includes a substrate, a semiconductor layer, a gate structure, a source structure and a drain structure, at least one dielectric layer, and at least one pad. The semiconductor layer is disposed on the substrate. The gate structure is disposed on the semiconductor layer. The source and the drain structures are disposed on opposite sides of the gate structure. The dielectric layer covers the gate, source, and drain structures. The pad is disposed on the dielectric layer and penetrates through the dielectric layer to electrically contact with the gate, source or drain structure.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: March 19, 2024
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsiu-Mei Yu, Guang-Yuan Jiang, Cheng-Yi Hsieh, Wei-Chan Chang, Chang-Sheng Lin
  • Patent number: 11935871
    Abstract: A semiconductor package including a first semiconductor die, a second semiconductor die, a first insulating encapsulation, a dielectric layer structure, a conductor structure and a second insulating encapsulation is provided. The first semiconductor die includes a first semiconductor substrate and a through silicon via (TSV) extending from a first side to a second side of the semiconductor substrate. The second semiconductor die is disposed on the first side of the semiconductor substrate. The first insulating encapsulation on the second semiconductor die encapsulates the first semiconductor die. A terminal of the TSV is coplanar with a surface of the first insulating encapsulation. The dielectric layer structure covers the first semiconductor die and the first insulating encapsulation. The conductor structure extends through the dielectric layer structure and contacts with the through silicon via.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Cheng-Chieh Hsieh, Tsung-Hsien Chiang, Hui-Chun Chiang, Tzu-Sung Huang, Ming-Hung Tseng, Kris Lipu Chuang, Chung-Ming Weng, Tsung-Yuan Yu, Tzuan-Horng Liu
  • Patent number: 11935841
    Abstract: A semiconductor package structure and a method for manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a device package and a shielding layer. The device package includes an electronic device unit and has a first surface, a second surface opposite to the first surface, and a third surface connecting the first surface to the second surface. The shielding layer is disposed on the first surface and the second surface of the device package. A common edge of the second surface and the third surface includes a first portion exposed from the shielding layer by a first length, and a common edge of the first surface and the third surface includes a second portion exposed from the shielding layer by a second length that is different from the first length.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: March 19, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Cheng-Yuan Kung, Hung-Yi Lin, Meng-Wei Hsieh, Yu-Pin Tsai
  • Publication number: 20240069277
    Abstract: A semiconductor package includes a first die stack structure and a second die stack structure, an insulating encapsulation, a redistribution structure, at least one prism structure and at least one reflector. The first die stack structure and the second die stack structure are laterally spaced apart from each other along a first direction, and each of the first die stack structure and the second die stack structure comprises an electronic die; and a photonic die electronically communicating with the electronic die. The insulating encapsulation laterally encapsulates the first die stack structure and the second die stack structure. The redistribution structure is disposed on the first die stack structure, the second die stack structure and the insulating encapsulation, and electrically connected to the first die stack structure and the second die stack structure. The at least one prism structure is disposed within the redistribution structure and optically coupled to the photonic die.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Cheng-Chieh Hsieh, Che-Hsiang Hsu, Chung-Ming Weng, Tsung-Yuan Yu
  • Publication number: 20230420328
    Abstract: A semiconductor device includes: a substrate; a seed layer disposed on the substrate; a compound semiconductor stack layer disposed on the seed layer; and a source metal layer and a drain metal layer disposed on the compound semiconductor stack layer. The semiconductor device further includes a conductive layer at least partially covering the source metal layer and the drain metal layer, and covering opposing side surfaces of the seed layer and opposing side surfaces of the compound semiconductor stack layer. The conductive layer electrically connects the seed layer and the source metal layer.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 28, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsiu-Mei YU, Guang-Yuan JIANG, Cheng-Yi HSIEH, Wei-Chan CHANG, Chang-Sheng LIN
  • Patent number: 11853269
    Abstract: The various embodiments described herein include methods, devices, and systems for reading and writing data from a database table. In one aspect, a method includes: (1) initiating a read transaction to read from a first non-key column of a row in the database table, the database table having a plurality of rows, each row comprising a primary key and a plurality of non-key columns, the initiating including: (a) determining that a write transaction holds a lock on a second non-key column of the row in the database table, and (b) determining that no lock is held on the first non-key column; and (2) in response, concurrently reading data from the first non-key column and writing a new column value to the second non-key column; where each non-key column includes a last-write timestamp that indicates when the last write occurred for the respective non-key column.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: December 26, 2023
    Assignee: Google LLC
    Inventors: Wilson Cheng-Yi Hsieh, Alexander Lloyd, Eric Hugh Veach
  • Patent number: 11789938
    Abstract: The present technology proposes techniques for ensuring globally consistent transactions. This technology may allow distributed systems to ensure the causal order of read and write transactions across different partitions of a distributed database. By assigning causally generated timestamps to the transactions based on one or more globally coherent time services, the timestamps can be used to preserve and represent the causal order of the transactions in the distributed system. In this regard, certain transactions may wait for a period of time after choosing a timestamp in order to delay the start of any second transaction that might depend on it. The wait may ensure that the effects of the first transaction are not made visible until its timestamp is guaranteed to be in the past. This may ensure that a consistent snapshot of the distributed database can be determined for any past timestamp.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: October 17, 2023
    Assignee: Google LLC
    Inventors: Wilson Cheng-Yi Hsieh, Alexander Lloyd, Peter Hochschild, Michael James Boyer Epstein, Sean Quinlan
  • Publication number: 20230238308
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a lead frame and a sub-substrate disposed on the lead frame, wherein the thickness of the sub-substrate is between 0 and 0.5 ?m. The semiconductor structure also includes an epitaxial layer disposed on the sub-substrate. The epitaxial layer includes a buffer layer, a channel layer and a barrier layer. The buffer layer is disposed between the sub-substrate and the channel layer. The channel layer is disposed between the buffer layer and the barrier layer. The semiconductor structure further includes a device layer disposed on the barrier layer and an interconnector structure electrically connected to the epitaxial layer and/or the device layer by a through hole.
    Type: Application
    Filed: January 27, 2022
    Publication date: July 27, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsiu-Mei YU, Guang-Yuan JIANG, Cheng-Yi HSIEH, Wei-Chan CHANG, Chang-Sheng LIN
  • Publication number: 20230216921
    Abstract: Throughput is preserved in a distributed system while maintaining concurrency by pushing a commit wait period to client commit paths and to future readers. As opposed to servers performing commit waits, the servers assign timestamps, which are used to ensure that causality is preserved. When a server executes a transaction that writes data to a distributed database, the server acquires a user-level lock, and assigns the transaction a timestamp equal to a current time plus an interval corresponding to bounds of uncertainty of clocks in the distributed system. After assigning the timestamp, the server releases the user-level lock. Any client devices, before performing a read of the written data, must wait until the assigned timestamp is in the past.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 6, 2023
    Inventors: Wilson Cheng-Yi Hsieh, Peter Hochschild
  • Publication number: 20230083337
    Abstract: A method for manufacturing a package structure includes providing a carrier board; providing at least one die having a top surface, a bottom surface, and a side surface on the carrier board; and forming a protective layer to cover at least a portion of the side surface of the die. The die includes a substrate, a semiconductor layer, a gate structure, a source structure and a drain structure, at least one dielectric layer, and at least one pad. The semiconductor layer is disposed on the substrate. The gate structure is disposed on the semiconductor layer. The source and the drain structures are disposed on opposite sides of the gate structure. The dielectric layer covers the gate, source, and drain structures. The pad is disposed on the dielectric layer and penetrates through the dielectric layer to electrically contact with the gate, source or drain structure.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsiu-Mei YU, Guang-Yuan JIANG, Cheng-Yi HSIEH, Wei-Chan CHANG, Chang-Sheng LIN
  • Patent number: 11601501
    Abstract: Throughput is preserved in a distributed system while maintaining concurrency by pushing a commit wait period to client commit paths and to future readers. As opposed to servers performing commit waits, the servers assign timestamps, which are used to ensure that causality is preserved. When a server executes a transaction that writes data to a distributed database, the server acquires a user-level lock, and assigns the transaction a timestamp equal to a current time plus an interval corresponding to bounds of uncertainty of clocks in the distributed system. After assigning the timestamp, the server releases the user-level lock. Any client devices, before performing a read of the written data, must wait until the assigned timestamp is in the past.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: March 7, 2023
    Assignee: Google LLC
    Inventors: Wilson Cheng-Yi Hsieh, Peter Hochschild
  • Patent number: 11588036
    Abstract: A chip structure includes a substrate, a bottom conductive layer, a semiconductor layer, an interlayer dielectric layer, at least one electrode, and at least one top electrode. The substrate includes in order a core layer and a composite material. The bottom conductive layer is disposed on the bottom surface of the core layer, the semiconductor layer is disposed on the substrate, and an interlayer dielectric layer is disposed on the semiconductor layer. The at least one electrode is disposed between the semiconductor layer and the interlayer dielectric layer, and the at least one top electrode is disposed on the interlayer dielectric layer and electrically coupled to the at least one electrode.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: February 21, 2023
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Hsiu-Mei Yu, Cheng-Yi Hsieh, Wei-Chan Chang, Chang-Sheng Lin, Chun-Yi Wu