Patents by Inventor Cheng-Yi Peng

Cheng-Yi Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190164850
    Abstract: A method for testing a semiconductor structure includes forming a dielectric layer over a test region of a substrate. A cap layer is formed over the dielectric layer. The dielectric layer and the cap layer are annealed. The annealed cap layer is removed. A ferroelectricity of the annealed dielectric layer is in-line tested.
    Type: Application
    Filed: June 27, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang LIN, Chia-Cheng HO, Chun-Chieh LU, Cheng-Yi PENG, Chih-Sheng CHANG
  • Publication number: 20190165143
    Abstract: Methods for forming semiconductor structures are provided. The method includes forming a fin structure over a substrate and forming a gate structure across the fin structure. The method further includes forming a fin spacer on a sidewall of the fin structure and partially removing the fin spacer. The method further includes recessing the fin structure to form a recess and implanting dopants from the recess to form a doped region. The method further includes diffusing the dopants in the doped region to form an expanded doped region and forming a source/drain structure over the expanded doped region.
    Type: Application
    Filed: May 31, 2018
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. MORE, Chun-Hsiung TSAI, Cheng-Yi PENG, Shih-Chieh CHANG, Kuo-Feng YU
  • Publication number: 20190165174
    Abstract: A semiconductor device includes a field effect transistor (FET). The FET includes a channel region and a source/drain region disposed adjacent to the channel region. The FET also includes a gate electrode disposed over the channel region. The FET is an n-type FET and the channel region is made of Si. The source/drain region includes an epitaxial layer including Si1-x-yM1xM2y, where M1 is one or more of Ge and Sn, and M2 is one or more of P and As, and 0.01?x?0.1.
    Type: Application
    Filed: February 28, 2018
    Publication date: May 30, 2019
    Inventors: Cheng-Yi PENG, Carlos H. DIAZ, Chun Hsiung TSAI, Yu-Ming LIN
  • Publication number: 20190131420
    Abstract: In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase. The first metallic film includes a oriented crystalline layer.
    Type: Application
    Filed: February 28, 2018
    Publication date: May 2, 2019
    Inventors: Chun-Chieh LU, Carlos H. DIAZ, Chih-Sheng CHANG, Cheng-Yi PENG, Ling-Yen YEH
  • Publication number: 20190131426
    Abstract: In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 2, 2019
    Inventors: Chun-Chieh LU, Cheng-Yi PENG, Chien-Hsing LEE, Ling-Yen YEH, Chih-Sheng CHANG, Carlos H. DIAZ
  • Publication number: 20190131425
    Abstract: In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Chun-Chieh LU, Carlos H. DIAZ, Chih-Sheng CHANG, Cheng-Yi PENG, Ling-Yen YEH, Chien-Hsing LEE
  • Publication number: 20190131382
    Abstract: A negative capacitance device includes a semiconductor layer. An interfacial layer is disposed over the semiconductor layer. An amorphous dielectric layer is disposed over the interfacial layer. A ferroelectric layer is disposed over the amorphous dielectric layer. A metal gate electrode is disposed over the ferroelectric layer. At least one of the following is true: the interfacial layer is doped; the amorphous dielectric layer has a nitridized outer surface; a diffusion-barrier layer is disposed between the amorphous dielectric layer and the ferroelectric layer; or a seed layer is disposed between the amorphous dielectric layer and the ferroelectric layer.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 2, 2019
    Inventors: Chun-Chieh Lu, Cheng-Yi Peng, Chien-Hsing Lee, Ling-Yen Yeh, Chih-Sheng Chang, Carlos H. Diaz
  • Patent number: 10276697
    Abstract: A negative capacitance device includes a semiconductor layer. An interfacial layer is disposed over the semiconductor layer. An amorphous dielectric layer is disposed over the interfacial layer. A ferroelectric layer is disposed over the amorphous dielectric layer. A metal gate electrode is disposed over the ferroelectric layer. At least one of the following is true: the interfacial layer is doped; the amorphous dielectric layer has a nitridized outer surface; a diffusion-barrier layer is disposed between the amorphous dielectric layer and the ferroelectric layer; or a seed layer is disposed between the amorphous dielectric layer and the ferroelectric layer.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Lu, Cheng-Yi Peng, Chien-Hsing Lee, Ling-Yen Yeh, Chih-Sheng Chang, Carlos H. Diaz
  • Publication number: 20190123143
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a fin active region formed on a semiconductor substrate and spanning between a first sidewall of a first shallow trench isolation (STI) feature and a second sidewall of a second STI feature; an anti-punch through (APT) feature of a first type conductivity; and a channel material layer of the first type conductivity, disposed on the APT feature and having a second doping concentration less than the first doping concentration.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 25, 2019
    Inventors: Cheng-Yi Peng, Ling-Yen Yeh, Chi-Wen Liu, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20190109134
    Abstract: A method of forming a semiconductor device includes etching a substrate to form two first trenches separated by a fin; filling the two first trenches with an isolation layer; and depositing a dielectric layer over the fin and the isolation layer. The method further includes forming a second trench in the dielectric layer over a channel region of the semiconductor device, the second trench exposing the isolation layer. The method further includes etching the isolation layer through the second trench to expose an upper portion of the fin in the channel region of the semiconductor device, and forming a dummy gate in the second trench over the isolation layer and engaging the upper portion of the fin.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 11, 2019
    Inventors: Hung-Li Chiang, Cheng-Yi Peng, Tsung-Yao Wen, Yee-Chia Yeo, Yen-Ming Chen
  • Publication number: 20190103461
    Abstract: FinFETs and methods of forming finFETs are described. According to some embodiments, a structure includes a channel region, first and second source/drain regions, a dielectric layer, and a gate electrode. The channel region includes semiconductor layers above a substrate. Each of the semiconductor layers is separated from neighboring ones of the semiconductor layers, and each of the semiconductor layers has first and second sidewalls. The first and second sidewalls are aligned along a first and second plane, respectively, extending perpendicularly to the substrate. The first and second source/drain regions are disposed on opposite sides of the channel region. The semiconductor layers extend from the first source/drain region to the second source/drain region. The dielectric layer contacts the first and second sidewalls of the semiconductor layers, and the dielectric layer extends into a region between the first plane and the second plane. The gate electrode is over the dielectric layer.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 4, 2019
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Tsung-Lin Lee
  • Publication number: 20190097051
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure extended above a substrate and a gate structure formed over a middle portion of the fin structure. The middle portion of the fin structure is wrapped by the gate structure. The FinFET device structure includes a source/drain (S/D) structure adjacent to the gate structure, and the S/D structure includes a doped region at an outer portion of the S/D structure, and the doped region includes gallium (Ga). The FinFET device structure includes a metal silicide layer formed over the doped region of the S/D structure, and the metal silicide layer is in direct contact with the doped region of the S/D structure.
    Type: Application
    Filed: February 9, 2018
    Publication date: March 28, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung TSAI, Shahaji B. MORE, Cheng-Yi PENG, Yu-Ming LIN, Kuo-Feng YU, Ziwei FANG
  • Publication number: 20190097061
    Abstract: A method for manufacturing a semiconductor device comprises forming a first fin and a second fin on a first active region and a second active region of a semiconductor substrate, respectively. A first dummy gate is formed over the first fin and a second dummy gate is formed over the second fin, wherein the first dummy gate has a first gate width along a lengthwise direction of the first fin, the second dummy gate has a second gate width along the lengthwise direction of the second fin, the first gate width is different from the second gate width. At least one of the first dummy gate and the second dummy gate is removed. A ferroelectric layer is then formed over the semiconductor substrate, in which the first dummy gate and/or the second dummy gate is removed. At least one metal gate electrode is formed on the ferroelectric layer.
    Type: Application
    Filed: January 3, 2018
    Publication date: March 28, 2019
    Inventors: Chia-Cheng HO, Ming-Shiang LIN, Cheng-Yi PENG, Chun-Chieh LU, Chih-Sheng CHANG, Carlos H. DIAZ
  • Publication number: 20190064238
    Abstract: A semiconductor test device for measuring a contact resistance includes: first fin structures, upper portions of the first fin structures protruding from an isolation insulating layer; epitaxial layers formed on the upper portions of the first fin structures, respectively; first conductive layers formed on the epitaxial layers, respectively; a first contact layer disposed on the first conductive layers at a first point; a second contact layer disposed on the first conductive layers at a second point apart from the first point; a first pad coupled to the first contact layer via a first wiring; and a second pad coupled to the second contact layer via a second wiring. The semiconductor test device is configured to measure the contact resistance between the first contact layer and the first fin structures by applying a current between the first pad and the second pad.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 28, 2019
    Inventors: Cheng-Yi PENG, Chia-Cheng HO, Ming-Shiang LIN, Chih-Sheng CHANG, Carlos H. DIAZ
  • Publication number: 20190035691
    Abstract: A semiconductor device includes a field effect transistor (FET). The FET includes a channel region and a source/drain region disposed adjacent to the channel region. The FET also includes a gate electrode disposed over the channel region. The FET is an n-type FET and the channel region is made of Si. The source/drain region includes an epitaxial layer including Si1-x-yM1xM2y, where M1 is one or more of Ge and Sn, and M2 is one or more of P and As, and 0.01?x?0.1.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: YASUTOSHI OKUNO, CHENG-YI PENG, ZIWEI FANG, I-MING CHANG, AKIRA MINEJI, YU-MING LIN, MENG-HSUAN HSIAO
  • Patent number: 10164048
    Abstract: A method includes providing a structure that includes a substrate, a gate structure over the substrate, and a source/drain (S/D) feature including silicon germanium (SiGe) adjacent to the gate structure. The method further includes implanting gallium (Ga) into the S/D feature; performing a first annealing process at a first temperature to recrystallize the SiGe; depositing a conductive material including a metal over the S/D feature after the first annealing process; performing a second annealing process at a second temperature to cause reaction between the metal and the S/D feature; and performing a third annealing process at a third temperature to activate dopants including Ga in the S/D feature.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Chun Hsiung Tsai, Shih-Chieh Chang, Kuo-Feng Yu, Cheng-Yi Peng
  • Patent number: 10164016
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a fin active region formed on a semiconductor substrate and spanning between a first sidewall of a first shallow trench isolation (STI) feature and a second sidewall of a second STI feature; an anti-punch through (APT) feature of a first type conductivity; and a channel material layer of the first type conductivity, disposed on the APT feature and having a second doping concentration less than the first doping concentration.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Ling-Yen Yeh, Chi-Wen Liu, Chih-Sheng Chang, Yee-Chia Yeo
  • Patent number: 10153280
    Abstract: A method of forming a semiconductor device includes etching a substrate to form two first trenches separated by a fin; filling the two first trenches with an isolation layer; and depositing a dielectric layer over the fin and the isolation layer. The method further includes forming a second trench in the dielectric layer over a channel region of the semiconductor device, the second trench exposing the isolation layer. The method further includes etching the isolation layer through the second trench to expose an upper portion of the fin in the channel region of the semiconductor device, and forming a dummy gate in the second trench over the isolation layer and engaging the upper portion of the fin.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: December 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Li Chiang, Cheng-Yi Peng, Tsung-Yao Wen, Yee-Chia Yeo, Yen-Ming Chen
  • Patent number: 10141310
    Abstract: A method of fabricating a semiconductor device includes forming a plurality of isolation features on a semiconductor substrate, thereby defining a first set of semiconductor features, performing an etching process on the first set of semiconductor features such that larger semiconductor features are etched deeper than smaller semiconductor features, after the etching process, forming anti-punch-through features on surfaces of the exposed features of the first set of semiconductor features, forming a semiconductor layer over the anti-punch-through features, and forming transistors on the semiconductor layer of each of the features of the first set of semiconductor features.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: November 27, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Hung-Li Chiang, Wei-Jen Lai, Tzu-Chiang Chen, Tsung-Lin Lee, Chih Chieh Yeh, Chih-Sheng Chang, Yee-Chia Yeo
  • Patent number: 10134847
    Abstract: FinFETs and methods of forming finFETs are described. According to some embodiments, a structure includes a channel region, first and second source/drain regions, a dielectric layer, and a gate electrode. The channel region includes semiconductor layers above a substrate. Each of the semiconductor layers is separated from neighboring ones of the semiconductor layers, and each of the semiconductor layers has first and second sidewalls. The first and second sidewalls are aligned along a first and second plane, respectively, extending perpendicularly to the substrate. The first and second source/drain regions are disposed on opposite sides of the channel region. The semiconductor layers extend from the first source/drain region to the second source/drain region. The dielectric layer contacts the first and second sidewalls of the semiconductor layers, and the dielectric layer extends into a region between the first plane and the second plane. The gate electrode is over the dielectric layer.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih Chieh Yeh, Cheng-Yi Peng, Tsung-Lin Lee