Patents by Inventor Cheng-Yi Peng

Cheng-Yi Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170133279
    Abstract: Inverters and methods of manufacture thereof are disclosed. In some embodiments, an inverter includes a substrate and a first tunnel FET (TFET) disposed over the substrate. The first TFET is a first fin field effect transistor (FinFET). A second TFET is over the first TFET. The second TFET is a second FinFET. A junction isolation region is disposed between a source of the first TFET and a source of the second TFET.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventor: Cheng-Yi Peng
  • Publication number: 20170133487
    Abstract: A method of forming a semiconductor device includes etching a substrate to form two first trenches separated by a fin; filling the two first trenches with an isolation layer; and depositing a dielectric layer over the fin and the isolation layer. The method further includes forming a second trench in the dielectric layer over a channel region of the semiconductor device, the second trench exposing the isolation layer. The method further includes etching the isolation layer through the second trench to expose an upper portion of the fin in the channel region of the semiconductor device, and forming a dummy gate in the second trench over the isolation layer and engaging the upper portion of the fin.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 11, 2017
    Inventors: Hung-Li Chiang, Cheng-Yi Peng, Tsung-Yao Wen, Yee-Chia Yeo, Yen-Ming Chen
  • Patent number: 9647071
    Abstract: FinFETs and methods of forming finFETs are described. According to some embodiments, a structure includes a channel region, first and second source/drain regions, a dielectric layer, and a gate electrode. The channel region includes semiconductor layers above a substrate. Each of the semiconductor layers is separated from neighboring ones of the semiconductor layers, and each of the semiconductor layers has first and second sidewalls. The first and second sidewalls are aligned along a first and second plane, respectively, extending perpendicularly to the substrate. The first and second source/drain regions are disposed on opposite sides of the channel region. The semiconductor layers extend from the first source/drain region to the second source/drain region. The dielectric layer contacts the first and second sidewalls of the semiconductor layers, and the dielectric layer extends into a region between the first plane and the second plane. The gate electrode is over the dielectric layer.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: May 9, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Tsung-Lin Lee
  • Patent number: 9646994
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes a first fin field effect transistor (FinFET) disposed over a substrate, and a second FinFET device disposed over the first FinFET. A junction isolation material is disposed between a source of the first FinFET and a source of the second FinFET.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 9, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chee-Wee Liu, Hung-Chih Chang, Cheng-Yi Peng, Chih-Sheng Chang
  • Publication number: 20170125585
    Abstract: A semiconductor device includes an n-type vertical field-effect transistor (FET) that includes: a first source/drain feature disposed in a substrate; a first vertical bar structure that includes a first sidewall and a second sidewall disposed over the substrate; a gate disposed along the first sidewall of the first vertical bar structure; a second vertical bar structure electrically coupled to the first vertical bar structure; and a second source/drain feature disposed over the first vertical bar structure; and a p-type FET that includes; a third source/drain feature disposed in the substrate; a third vertical bar structure that includes a third sidewall and a fourth sidewall disposed over the substrate; the gate disposed along the third sidewall of the third vertical bar structure; a fourth vertical bar structure electrically coupled to the third vertical bar structure; and a fourth source/drain feature disposed over the third vertical bar structure.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: HUNG-LI CHIANG, CHIH CHIEH YEH, CHENG-YI PENG, TZU-CHIANG CHEN, YEE-CHIA YEO
  • Patent number: 9627531
    Abstract: A semiconductor device includes an n-type vertical field-effect transistor (FET) that includes: a first source/drain feature disposed in a substrate; a first vertical bar structure that includes a first sidewall and a second sidewall disposed over the substrate; a gate disposed along the first sidewall of the first vertical bar structure; a second vertical bar structure electrically coupled to the first vertical bar structure; and a second source/drain feature disposed over the first vertical bar structure; and a p-type FET that includes; a third source/drain feature disposed in the substrate; a third vertical bar structure that includes a third sidewall and a fourth sidewall disposed over the substrate; the gate disposed along the third sidewall of the third vertical bar structure; a fourth vertical bar structure electrically coupled to the third vertical bar structure; and a fourth source/drain feature disposed over the third vertical bar structure.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: April 18, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Li Chiang, Chih Chieh Yeh, Cheng-Yi Peng, Tzu-Chiang Chen, Yee-Chia Yeo
  • Publication number: 20170104061
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Application
    Filed: November 6, 2015
    Publication date: April 13, 2017
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Publication number: 20170084498
    Abstract: A method for fabricating a semiconductor device includes forming a relaxed semiconductor layer on a substrate, the substrate comprising an n-type region and a p-type region. The method further includes forming a tensile strained semiconductor layer on the relaxed semiconductor layer, etching a portion of the tensile strained semiconductor layer in the p-type region, forming a compressive strained semiconductor layer on the tensile strained semiconductor layer in the p-type region, forming a first gate in the n-type region and a second gate in the p-type region, and forming a first set of source/drain features adjacent to the first gate and a second set of source/drain features adjacent to the second gate. The second set of source/drain features are deeper than the first set of source/drain features.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Jung-Piao Chiu, Tsung-Lin Lee, Chih Chieh Chang, Yee-Chia Yeo
  • Publication number: 20170069756
    Abstract: A semiconductor device includes a substrate, a fin structure disposed over the substrate and including a channel region and a source/drain region, a gate structure disposed over at least a portion of the fin structure, the channel region being beneath the gate structure and the source/drain region being outside of the gate structure, a strain material layer disposed over the source/drain region, the strain material layer providing stress to the first channel region, and a contact layer wrapping around the first strain material layer. A width of the source/drain region is smaller than a width of the channel region.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 9, 2017
    Inventors: Hung-Li CHIANG, Cheng-Yi PENG, Jyh-Cherng SHEU, Yee-Chia YEO
  • Publication number: 20170062561
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. The fin structure includes a first surface and a second surface. The first surface is inclined to the second surface. The semiconductor device structure also includes a passivation layer covering the first surface and the second surface of the fin structure. The thickness of a first portion of the passivation layer covering the first surface is substantially the same as that of a second portion of the passivation layer covering the second surface.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi PENG, Chih-Chieh YEH, Hung-Li CHIANG, Hung-Ming CHEN, Yee-Chia YEO
  • Patent number: 9583490
    Abstract: Inverters and methods of manufacture thereof are disclosed. In some embodiments, an inverter includes a substrate and a first tunnel FET (TFET) disposed over the substrate. The first TFET is a first fin field effect transistor (FinFET). A second TFET is over the first TFET. The second TFET is a second FinFET. A junction isolation region is disposed between a source of the first TFET and a source of the second TFET.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: February 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Cheng-Yi Peng
  • Patent number: 9577071
    Abstract: A method of fabricating a field effect transistor (FET) includes forming a channel portion over a first surface of a substrate, wherein the channel portion comprises germanium and defines a second surface above the first surface. The method further includes forming cavities that extend through the channel portion and into the substrate. The method further includes epitaxially-growing a strained material in the cavities, wherein the strained material comprises SiGe, Ge, Si, SiC, GeSn, SiGeSn, SiSn or a III-V material.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Cheng-Yi Peng, Clement Hsingjen Wann
  • Patent number: 9570580
    Abstract: A method of forming a semiconductor device includes etching a substrate to form two first trenches separated by a fin; filling the two first trenches with an isolation layer; and depositing a dielectric layer over the fin and the isolation layer. The method further includes forming a second trench in the dielectric layer over a channel region of the semiconductor device, the second trench exposing the isolation layer. The method further includes etching the isolation layer through the second trench to expose an upper portion of the fin in the channel region of the semiconductor device, and forming a dummy gate in the second trench over the isolation layer and engaging the upper portion of the fin.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Li Chiang, Cheng-Yi Peng, Tsung-Yao Wen, Yee-Chia Yeo, Yen-Ming Chen
  • Publication number: 20160365414
    Abstract: FinFETs and methods of forming finFETs are described. According to some embodiments, a structure includes a channel region, first and second source/drain regions, a dielectric layer, and a gate electrode. The channel region includes semiconductor layers above a substrate. Each of the semiconductor layers is separated from neighboring ones of the semiconductor layers, and each of the semiconductor layers has first and second sidewalls. The first and second sidewalls are aligned along a first and second plane, respectively, extending perpendicularly to the substrate. The first and second source/drain regions are disposed on opposite sides of the channel region. The semiconductor layers extend from the first source/drain region to the second source/drain region. The dielectric layer contacts the first and second sidewalls of the semiconductor layers, and the dielectric layer extends into a region between the first plane and the second plane. The gate electrode is over the dielectric layer.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Tsung-Lin Lee
  • Patent number: 9515071
    Abstract: A semiconductor device includes a substrate having a first region and a second region, an n-type transistor in the first region, the n-type transistor comprising a first set of source/drain features, and a p-type transistor in the second region, the p-type transistor comprising a second set of source/drain features. The second set of source/drain features extend deeper than the first set of source/drain features.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 6, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Peng, Yu-Lin Yang, Chia-Cheng Ho, Jung-Piao Chiu, Tsung-Lin Lee, Chih Chieh Yeh, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20160336429
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Cheng-Yi PENG, Chih Chieh YEH, Chih-Sheng CHANG, Hung-Li CHIANG, Hung-Ming CHEN, Yee-Chia YEO
  • Publication number: 20160336319
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate and forming a first gate structure over a first portion of the fin structure. A first nitride layer is formed over a second portion of the fin structure. The first nitride layer is exposed to ultraviolet radiation. Source/drain regions are formed at the second portion of the fin structure.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Yu-Lin YANG, Chia-Cheng HO, Chih Chieh YEH, Cheng-Yi PENG, Tsung-Lin LEE
  • Publication number: 20160307928
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes a first fin field effect transistor (FinFET) disposed over a substrate, and a second FinFET device disposed over the first FinFET. A junction isolation material is disposed between a source of the first FinFET and a source of the second FinFET.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Chee-Wee Liu, Hung-Chih Chang, Cheng-Yi Peng, Chih-Sheng Chang
  • Patent number: 9472669
    Abstract: In a method of fabricating a Fin FET, first and second fin structures are formed. The first and second fin structures protrude from an isolation insulating layer. A gate structure is formed over the first and second fin structures, each of which has source/drain regions, having a first width, outside of the gate structure. Portions of sidewalls of the source/drain regions are removed to form trimmed source/drain regions, each of which has a second width smaller than the first width. A strain material is formed over the trimmed source/drain regions such that the strain material formed on the first fin structure is separated from that on the second fin structure. An interlayer dielectric layer is formed over the gate structure and the source/drain regions with the strain material. A contact layer is formed on the strain material such that the contact layer wraps around the strain material.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: October 18, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Cheng-Yi Peng, Jyh-Cherng Sheu, Yee-Chia Yeo
  • Patent number: 9406697
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes a first fin field effect transistor (FinFET) disposed over a substrate, and a second FinFET device disposed over the first FinFET. A junction isolation material is disposed between a source of the first FinFET and a source of the second FinFET.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: August 2, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chee-Wee Liu, Hung-Chih Chang, Cheng-Yi Peng, Chih-Sheng Chang