Patents by Inventor Chi-Horn Pai

Chi-Horn Pai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8841181
    Abstract: A method for fabricating a semiconductor device is described. A gate layer, a C-doped first protective layer and a hard mask layer are formed on a substrate and then patterned to form a first stack in a first area and a second stack in a second area. A second protective layer is formed on the sidewalls of the first and the second stacks. A blocking layer is formed in the first area and a first spacer formed on the sidewall of the second protective layers on the sidewall of the second stack in the second area. A semiconductor compound is formed in the substrate beside the first spacer. The blocking layer and the first spacer are removed. The hard mask layer in the first stack and the second stack is removed.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ying-Hung Chou, Shao-Hua Hsu, Chi-Horn Pai, Zen-Jay Tsai, Shih-Hao Su, Chun-Chia Chen, Shih-Chieh Hsu, Chih-Chung Chen
  • Patent number: 8709930
    Abstract: A semiconductor process is provided. The prior steps include: a first gate including a first cap layer and a second gate including a second cap layer are formed on a substrate. A hard mask layer is formed to cover the first gate and the second gate. The material of the hard mask layer is different from the material of the first cap layer and the second cap layer. The hard mask layer is removed entirely after a lithography process and an etching process are performed. The following steps include: a material is formed to entirely cover the first gate and the second gate. The material, the first gate and the second gate are etched back to make the first gate and the second gate have the same level and expose layers in both of them.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: April 29, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Zen-Jay Tsai, Shao-Hua Hsu, Chi-Horn Pai, Ying-Hung Chou, Shih-Hao Su, Shih-Chieh Hsu, Chih-Ho Wang, Hung-Yi Wu, Shui-Yen Lu
  • Publication number: 20130277754
    Abstract: The present invention provides a resistor structure including a substrate, an ILD layer, a transistor and a resistor. The substrate includes a resistor region and an active region. The ILD layer is disposed directly on the substrate. The transistor is disposed in the active region in the ILD layer wherein the transistor includes a metal gate. The resistor is disposed in the resistor region above the ILD layer, wherein the resistor directly contacts the ILD layer.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Inventors: Chia-Wen Liang, Yi-Chung Sheng, Shih-Chieh Hsu, Yao-Chang Wang, Chi-Horn Pai, Jie-Ning Yang, Chi-Sheng Tseng
  • Publication number: 20130234216
    Abstract: A method for fabricating a semiconductor device is described. A gate layer, a C-doped first protective layer and a hard mask layer are formed on a substrate and then patterned to form a first stack in a first area and a second stack in a second area. A second protective layer is formed on the sidewalls of the first and the second stacks. A blocking layer is formed in the first area and a first spacer formed on the sidewall of the second protective layers on the sidewall of the second stack in the second area. A semiconductor compound is formed in the substrate beside the first spacer. The blocking layer and the first spacer are removed. The hard mask layer in the first stack and the second stack is removed.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ying-Hung Chou, Shao-Hua Hsu, Chi-Horn Pai, Zen-Jay Tsai, Shih-Hao Su, Chun-Chia Chen, Shih-Chieh Hsu, Chih-Chung Chen
  • Publication number: 20130168816
    Abstract: The present invention provides a structure of a resistor comprising: a substrate having an interfacial layer thereon; a resistor trench formed in the interfacial layer; at least a work function metal layer covering the surface of the resistor trench; at least two metal bulks located at two ends of the resistor trench and adjacent to the work function metal layer; and a filler formed between the two metal bulks inside the resistor trench, wherein the metal bulks are direct in contact with the filler.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Inventors: Chih-Kai Kang, Sheng-Yuan Hsueh, Shu-Hsuan Chih, Po-Kuang Hsieh, Chia-Chen Sun, Po-Cheng Huang, Shih-Chieh Hsu, Chi-Horn Pai, Yao-Chang Wang, Jie-Ning Yang, Chi-Sheng Tseng, Po-Jui Liao, Kuang-Hung Huang, Shih-Chang Chang
  • Patent number: 8477006
    Abstract: A manufacturing method for a resistor integrated with a transistor having metal gate includes providing a substrate having a transistor region and a resistor region defined thereon, respectively forming a transistor having a dummy gate in the transistor region and a resistor in the resistor region, removing the dummy gate and portions of the resistor to form a first trench in the transistor and two second trenches in the resistor, forming at least a high-k gate dielectric layer in the first trench and the second trenches, and forming a metal gate in the first trench and metal structures respectively in the second trenches.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 2, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Jie-Ning Yang, Shih-Chieh Hsu, Chun-Hsien Lin, Yao-Chang Wang, Chi-Horn Pai, Chi-Sheng Tseng
  • Publication number: 20130137256
    Abstract: A semiconductor process is provided. The prior steps include: a first gate including a first cap layer and a second gate including a second cap layer are formed on a substrate. A hard mask layer is formed to cover the first gate and the second gate. The material of the hard mask layer is different from the material of the first cap layer and the second cap layer. The hard mask layer is removed entirely after a lithography process and an etching process are performed. The following steps include: a material is formed to entirely cover the first gate and the second gate. The material, the first gate and the second gate are etched back to make the first gate and the second gate have the same level and expose layers in both of them.
    Type: Application
    Filed: November 25, 2011
    Publication date: May 30, 2013
    Inventors: Zen-Jay Tsai, Shao-Hua Hsu, Chi-Horn Pai, Ying-Hung Chou, Shih-Hao Su, Shih-Chieh Hsu, Chih-Ho Wang, Hung-Yi Wu, Shui-Yen Lu
  • Publication number: 20130106448
    Abstract: A test key structure for use in measuring step height includes a substrate, and a pair of test contacts. The substrate includes an isolation region and a diffusion region. The test contact pair includes a first test contact and a second test contact for measuring electrical resistances. The first test contact is disposed on the diffusion region and the second test contact is disposed on the isolation region.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Inventors: Chih-Kai Kang, Shu-Hsuan Chih, Sheng-Yuan Hsueh, Chia-Chen Sun, Po-Kuang Hsieh, Chi-Horn Pai, Shih-Chieh Hsu
  • Publication number: 20130049168
    Abstract: A method for forming a resistor integrated with a transistor having metal gate includes providing a substrate having a transistor region and a resistor region defined thereon, forming a transistor having a polysilicon dummy gate in the transistor region and a polysilicon main portion with two doped regions positioned at two opposite ends in the resistor region, performing an etching process to remove the polysilicon dummy gate to form a first trench and remove portions of the doped regions to form two second trenches, and forming a metal gate in the first trench to form a transistor having the metal gate and metal structures respectively in the second trenches to form a resistor.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Inventors: Jie-Ning Yang, Shih-Chieh Hsu, Yao-Chang Wang, Chi-Horn Pai, Chi-Sheng Tseng, Kun-Szu Tseng, Ying-Hung Chou, Chiu-Hsien Yeh
  • Publication number: 20130049924
    Abstract: A manufacturing method for a resistor integrated with a transistor having metal gate includes providing a substrate having a transistor region and a resistor region defined thereon, respectively forming a transistor having a dummy gate in the transistor region and a resistor in the resistor region, removing the dummy gate and portions of the resistor to form a first trench in the transistor and two second trenches in the resistor, forming at least a high-k gate dielectric layer in the first trench and the second trenches, and forming a metal gate in the first trench and metal structures respectively in the second trenches.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: Jie-Ning Yang, Shih-Chieh Hsu, Chun-Hsien Lin, Yao-Chang Wang, Chi-Horn Pai, Chi-Sheng Tseng
  • Patent number: 8278166
    Abstract: A method of manufacturing a CMOS device includes providing a substrate having a first region and a second region; forming a first gate structure and a second gate structure, each of the gate structures comprising a sacrificial layer and a hard mask layer; forming a patterned first protecting layer covering the first region and a first spacer on sidewalls of the second gate structure; performing an etching process to form first recesses in the substrate; performing a SEG process to form epitaxial silicon layers in each first recess; forming a patterned second protecting layer covering the second region; and performing a dry etching process with the patterned second protecting layer serving as an etching mask to etch back the patterned first protecting layer to form a second spacer on sidewalls of the first gate structure and to thin down the hard mask layer on the first gate structure.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 2, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Chia Chen, Ying-Hung Chou, Zen-Jay Tsai, Shih-Chieh Hsu, Yi-Chung Sheng, Chi-Horn Pai
  • Patent number: 8207043
    Abstract: A method for making a semiconductor MOS device is provided. A gate structure is formed on a substrate. A source and a drain are formed in the substrate on both sides of the gate structure. The substrate is then subjected to a pre-amorphization implant (PAI) process. A transitional stress layer is then formed on the substrate. Thereafter, a laser anneal with a first temperature is performed. After the laser anneal, a rapid thermal process is performed with a second temperature that is lower than the first temperature. Subsequently, the transitional stress layer is removed.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: June 26, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Huang-Yi Lin, Jiun-Hung Shen, Chi-Horn Pai, Yi-Chung Sheng, Shih-Chieh Hsu
  • Publication number: 20120012938
    Abstract: A method of manufacturing a CMOS device includes providing a substrate having a first region and a second region; forming a first gate structure and a second gate structure, each of the gate structures comprising a sacrificial layer and a hard mask layer; forming a patterned first protecting layer covering the first region and a first spacer on sidewalls of the second gate structure; performing an etching process to form first recesses in the substrate; performing a SEG process to form epitaxial silicon layers in each first recess; forming a patterned second protecting layer covering the second region; and performing a dry etching process with the patterned second protecting layer serving as an etching mask to etch back the patterned first protecting layer to form a second spacer on sidewalls of the first gate structure and to thin down the hard mask layer on the first gate structure.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Inventors: Chun-Chia Chen, Ying-Hung Chou, Zen-Jay Tsai, Shih-Chieh Hsu, Yi-Chung Sheng, Chi-Horn Pai
  • Patent number: 8026571
    Abstract: A manufacturing method for a semiconductor-device isolation structure comprises providing a substrate with at least one shallow trench isolation structure, performing a salicide process that forms a recess on the surface of the shallow trench isolation structure, forming a cap film covering the substrate and filling the recess, performing an etching process to remove the cap film outside the recess, and forming a contact etch stop layer covering the substrate and filling the recess. Due to the filling recess with the cap film first, the contact etch stop layer covering the substrate and filling the recess does not have seams or voids.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: September 27, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Shui-Yen Lu, Guang-Wei Ye, Shin-Chi Chen, Tsung-Wen Chen, Ching-Fang Chu, Chi-Horn Pai, Chieh-Te Chen
  • Publication number: 20110076823
    Abstract: A method for making a semiconductor MOS device is provided. A gate structure is formed on a substrate. A source and a drain are formed in the substrate on both sides of the gate structure. The substrate is then subjected to a pre-amorphization implant (PAI) process. A transitional stress layer is then formed on the substrate. Thereafter, a laser anneal with a first temperature is performed. After the laser anneal, a rapid thermal process is performed with a second temperature that is lower than the first temperature. Subsequently, the transitional stress layer is removed.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Inventors: Huang-Yi Lin, Jiun-Hung Shen, Chi-Horn Pai, Yi-Chung Sheng, Shih-Chieh Hsu
  • Publication number: 20090294927
    Abstract: A manufacturing method for a semiconductor-device isolation structure comprises providing a substrate with at least one shallow trench isolation structure, performing a salicide process that forms a recess on the surface of the shallow trench isolation structure, forming a cap film covering the substrate and filling the recess, performing an etching process to remove the cap film outside the recess, and forming a contact etch stop layer covering the substrate and filling the recess. Due to the filling recess with the cap film first, the contact etch stop layer covering the substrate and filling the recess does not have seams or voids.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Inventors: Shui-Yen Lu, Guang-Wei Ye, Shin-Chi Chen, Tsung-Wen Chen, Ching-Fang Chu, Chi-Horn Pai, Chieh-Te Chen
  • Publication number: 20020109174
    Abstract: The present invention provides an asymmetric pull-down transistor in a semiconductor device. The transistor comprises a substrate, a drain region in the substrate, a source region in the substrate wherein the source region is spaced from the drain region by a channel region and extended into a portion of the channel region, a gate structure above the channel region, and a spacer at a sidewall of the gate structure. A method comprises providing a substrate, forming a gate structure on the substrate, forming a mask covering the partial gate structure and the partial substrate. Next, the gate structure and the mask are used as implanting mask and the first ions are tilted implanted into the substrate to form a source region and a drain region. The source region is extended into the partial channel. Then the mask is removed and a spacer is formed at a sidewall of the gate structure.
    Type: Application
    Filed: February 15, 2001
    Publication date: August 15, 2002
    Inventors: Chi-Horn Pai, Chih-Yuan Hsiao
  • Publication number: 20020072172
    Abstract: A method of fabricating a storage node is achieved. The method includes: (1) providing a substrate, positioned with at least a first conductive layer, (2) forming a dielectric layer on and completely covering the substrate, (3) forming a contact hole within the dielectric layer to connect with the conductive layer, (4) forming a second conductive layer on the dielectric layer and filling in the contact hole, (5) forming a silicide layer and a third conductive layer, respectively, on the second conductive layer, (6) forming a patterned photoresist layer on the third conductive layer, to define the pattern and position of the storage node, (7) etching the third conductive layer, the silicide layer and the second conductive layer uncovered by the photoresist layer down to the surface of the dielectric layer, (8) removing the photoresist layer, and (9) wet etching the silicide layer to finish the fabrication of the fin-type storage node.
    Type: Application
    Filed: December 8, 2000
    Publication date: June 13, 2002
    Inventors: Chi-Horn Pai, Chih-Yuan Hsiao