Patents by Inventor Chi-Kuan Kao

Chi-Kuan Kao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120090426
    Abstract: A powertrain system in a hybrid vehicle includes a hydraulic device, a pilot valve, and a regulator valve. The pilot valve is operably connected to the hydraulic device and configured to actuate. The pilot valve includes at least one micro-electro-mechanical systems (MEMS) based device. The regulator valve is operably connected to the pilot valve and the hydraulic device. The regulator valve is configured to direct fluid to the hydraulic device based on the actuation of the pilot valve.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao, Kumaraswamy V. Hebbale, Dongxu Li, Andrew L. Bartos, Kevin B. Rober
  • Publication number: 20120090945
    Abstract: A pressure and flow control system for a dog clutch includes a pilot valve, a regulating valve, and a selector. The pilot valve is configured to produce a pilot signal and includes a first valve, which is a MEMS microvalve. The regulating valve is in fluid communication with the pilot valve, and is configured to receive the pilot signal. The regulating valve is further configured to output a control signal. The selector is configured to engage and disengage the dog clutch in response to the control signal.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao, Kumaraswamy V. Hebbale, Dongxu Li, Andrew L. Bartos, Kevin B. Rober
  • Publication number: 20120090940
    Abstract: A dry dual clutch transmission includes at least one hydraulic component and a pilot valve operably connected to the hydraulic component to actuate the hydraulic component. The pilot valve includes a Micro-Electro-Mechanical Systems (MEMS) based pressure differential actuator valve. The hydraulic component may include but is not limited to a first clutch and a second clutch of the dry dual clutch transmission, an on/off solenoid, a line pressure control valve or a synchronizing shift fork.
    Type: Application
    Filed: May 24, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kumaraswamy V. Hebbale, Farzad Samie, Chunhao J. Lee, Dongxu Li, Andrew L. Bartos, Chi-Kuan Kao, Kevin B. Rober
  • Publication number: 20120090947
    Abstract: A pressure and flow control system for a torque converter clutch includes a pilot valve, a regulating valve, and a torque converter control valve. The pilot valve is configured to produce a pilot signal and includes a first valve, which is a MEMS microvalve. The regulating valve is in fluid communication with the pilot valve, and is configured to receive the pilot signal. The regulating valve is further configured to output a control signal. The torque converter control valve is configured to engage and disengage the torque converter clutch in response to the control signal.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao, Kumaraswamy V. Hebbale, Dongxu Li, Andrew L. Bartos, Kevin B. Rober
  • Publication number: 20120090946
    Abstract: A pressure control system includes a hydraulically-controlled component, a pilot valve, and a regulating valve. The pilot valve is configured to produce a pilot signal and includes a first valve, which is a MEMS microvalve. The regulating valve is in fluid communication with the pilot valve, and is configured to receive the pilot signal. The regulating valve is further configured to output a control signal, which controls the hydraulically-controlled component.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chunhao J. Lee, Chi-Kuan Kao, Farzad Samie, Dongxu Li, Kumaraswamy V. Hebbale, Andrew L. Bartos, Kevin B. Rober
  • Publication number: 20120090944
    Abstract: An automated manual transmission includes a hydraulic device, a pilot valve, and a regulating valve. The pilot valve is operably connected to the hydraulic device and configured to actuate. The pilot valve includes at least one micro-electro-mechanical systems (MEMS) based device. The regulating valve is operably connected to the pilot valve and the hydraulic device. The regulating valve is configured to direct fluid to the hydraulic device based on the actuation of the pilot valve.
    Type: Application
    Filed: August 1, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dongxu Li, Farzad Samie, Chunhao J. Lee, Kumaraswamy V. Hebbale, Chi-Kuan Kao, Andrew L. Bartos, Kevin B. Rober, Bret M. Olson
  • Publication number: 20120090937
    Abstract: A continuously variable transmission (CVT) for a vehicle includes a hydraulically-controlled component and a pilot valve. The pilot valve includes at least one micro-electrical-mechanical-systems (MEMS) based device. The pilot valve is operably connected to and is configured for actuating the hydraulically-controlled component. The pilot valve additionally includes a regulating valve operably connected to the pilot valve and to the hydraulically-controlled component. The regulating valve is configured to direct fluid to the hydraulically-controlled component when actuated by the pilot valve.
    Type: Application
    Filed: May 24, 2011
    Publication date: April 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Farzad Samie, Chi-Kuan Kao, Kumaraswamy V. Hebbale, Chunhao J. Lee, Dongxu Li, Andrew L. Bartos, Kevin B. Rober
  • Publication number: 20120078476
    Abstract: A powertrain includes a transmission coupled to a driveline. A method for monitoring torque in the powertrain includes monitoring signal outputs from a first rotational sensor and a second rotational sensor configured to monitor respective rotational positions of first and second locations of a driveline, determining a positional relationship between the first and second locations using positional identifiers of the first and second rotational sensors, deriving a twist angle from the positional relationship between the first and second rotational sensors, calculating a magnitude of driveline torque corresponding to the twist angle, and controlling the vehicular powertrain according to the calculated magnitude of driveline torque.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: DONGXU LI, FARZAD SAMIE, Chunhao J. Lee, Chi-Kuan Kao, Kumaraswamy V. Hebbale
  • Publication number: 20120078475
    Abstract: A powertrain includes a transmission coupled to a driveline. A method for monitoring torque of the driveline includes monitoring signals from first and second rotational sensors located at respective first and second rotationally-coupled positions of the driveline separated by a distance along the driveline, determining rotation of the driveline at the first and second rotationally-coupled positions from said signals, determining a twist angle derived from a difference between the rotations of the driveline at the first and second rotationally-coupled positions, calculating a driveline torque corresponding to the twist angle, and controlling operation of the powertrain in response to the driveline torque.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: DONGXU LI, KUMARASWAMY V. HEBBALE, Chunhao I. Lee, Farzad Samie, Chi-Kuan Kao, Ming Cao
  • Publication number: 20120035819
    Abstract: A powertrain includes a torque generative device and a torque converter having an impeller, a turbine and a torque converter clutch. A method to control torque converter slip includes monitoring a reference slip and a turbine speed of the torque converter, determining a turbine torque based upon the reference slip and the turbine speed, determining a feed forward torque converter clutch pressure command based upon the turbine torque, a torque generative device torque, and a TCC gain, and controlling the torque converter clutch based upon the feed forward torque converter clutch pressure command.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Kumaraswamy V. Hebbale, Chi-Kuan Kao, Chunhao J. Lee, Xu Chen, Jeremy V. Horgan, Farzad Samie
  • Patent number: 8100802
    Abstract: A method for controlling a torque converter having an internal lockup clutch includes detecting vehicle operating conditions and executing one of a stored plurality of torque converter clutch modes each corresponding to a different set of vehicle operating conditions. A fully-released mode corresponds to vehicle pre-launch, a partially-engaged mode corresponds to post-launch of the vehicle in first gear, downshift, coasting, throttle tip-in, or throttle tip-out; a first fully-engaged mode corresponds to steady-state operation in second gear or a higher; and a second fully-engaged mode corresponds to an upshift. Slippage across the converter is controlled only during the first fully-engaged mode. A vehicle is also provided having an engine, transmission, torque converter with lockup clutch, and controller having a control algorithm.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: January 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunhao J Lee, Farzad Samie, Chi-Kuan Kao
  • Patent number: 8090512
    Abstract: A method optimizes a fill event of an apply chamber of a fluid-actuated clutch, and includes determining input values describing the fill event, and then estimating a fill time using the input values. The method includes filling the apply chamber using the estimated fill time (EFT) or within an allowable range of the EFT. The input values can include a command line pressure, command fill stroke pressure, and an estimated viscosity of the fluid, although other values can be used. The input values are processed through a neural network having an input layer, an optional hidden layer, and an output layer. An assembly includes a fluid-actuated clutch having an apply chamber and a controller operable for estimating the fill time required for filling the apply chamber, and for controlling the fill of the apply chamber within the EFT.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: January 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Ming Cao, Chi-Kuan Kao, Chunhao J. Lee
  • Patent number: 8029403
    Abstract: A multi-speed transmission for a vehicle is provided with a selectable one-way braking clutch (SOWBC). The transmission has an input member connected for common rotation with one of the members of four planetary gear sets and an output member connected for common rotation with another of the members of the planetary gear sets. Four interconnecting members connect different members of the planetary gear sets for common rotation. A first brake is selectively engagable to ground the first member of the first planetary gear set to the stationary member. A first, a second, and a third rotating clutch are each selectively engagable to connect a different respective pair of the members of the planetary gear sets for common rotation. A selectable one-way braking clutch is configured to brake in one rotational direction and is selectively reversible to brake in an opposite rotational direction, and freewheels in some speed ratios.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: October 4, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao
  • Publication number: 20100263978
    Abstract: A torque transmitting device includes a plurality of clutch plates, a ramp member that is selectively rotatable about an axis and that defines a ramp surface, a worm gear that is operatively connected to the ramp member for rotation therewith about the axis, and a roller element contacting the ramp surface.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 21, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS. INC., Shanghai Jiao Tong University
    Inventors: Li Chen, Chengliang Yin, Jie Shu, Jian Yao, Chunhao J. Lee, Chi-Kuan Kao, Farzad Samie, Yu Dong
  • Publication number: 20100234167
    Abstract: A multi-speed transmission for a vehicle is provided with a selectable one-way braking clutch (SOWBC). The transmission has an input member connected for common rotation with one of the members of four planetary gear sets and an output member connected for common rotation with another of the members of the planetary gear sets. Four interconnecting members connect different members of the planetary gear sets for common rotation. A first brake is selectively engagable to ground the first member of the first planetary gear set to the stationary member. A first, a second, and a third rotating clutch are each selectively engagable to connect a different respective pair of the members of the planetary gear sets for common rotation. A selectable one-way braking clutch is configured to brake in one rotational direction and is selectively reversible to brake in an opposite rotational direction, and freewheels in some speed ratios.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 16, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao
  • Publication number: 20100179026
    Abstract: A method of operating a friction plate clutch includes activating a clutch control mechanism to engage the friction plate clutch, and engaging a holding clutch. The clutch control mechanism is then deactivated, rendering it unable to maintain engagement of the friction plate clutch. The holding clutch is used to retain engagement of the friction plate clutch. One embodiment of the method uses a wedge clutch as the holding clutch, and another embodiment uses a one-way bearing clutch. The clutch control mechanism may be a hydraulic clutch control. A latching clutch assembly includes a friction plate clutch movable between an engaged and a disengaged position. A bearing clutch is operatively coupled to the friction plate clutch and has a locked and a released position. The locked position is configured to oppose movement of the friction plate clutch from the engaged position to the disengaged position.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Edwin T. Grochowski, Chi-Kuan Kao
  • Patent number: 7749123
    Abstract: A differential is provided comprising a rotatable differential housing, first and second output members, a first cycloid disk having an epitrochoid groove, a second cycloid disk having a hypotrochoid groove, a coupling disk connected having a plurality of holes each containing a sphere, wherein the spheres are engageable with the grooves for transferring torque between the cycloid disks. A method is also provided for distributing torque in a vehicle having two axles including at least one drive axle, including attaching one axle to a cycloid disk having a continuous epitrochoid groove, attaching another axle to a cycloid disk having a continuous hypotrochoid groove, attaching a rotatable housing to a center coupling disk having a plurality of holes, and positioning a torque transfer sphere that is engageable with the grooves in each of the holes, wherein the spheres are configured for distributing torque along the drive axles.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: July 6, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Hsu-Chiang Miao, Chi-Kuan Kao
  • Publication number: 20100063698
    Abstract: A powertrain in a vehicle includes an electro-mechanical transmission having a selectable one-way clutch mechanically-operatively coupled to an internal combustion engine and configured to selectively transmit mechanical power to an output member. A control method includes monitoring a vehicle speed, monitoring a transmission gear state, comparing the vehicle speed to a threshold low speed range, transitioning a selectable one-way clutch into an engaged mode when said vehicle speed is not in a forward direction in excess of the threshold low speed range, and maintaining the selectable one-way clutch in the engaged mode based upon the transmission gear state remaining in a first gear state and the vehicle speed remaining within said threshold low speed range, a neutral state, or a reverse state.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao
  • Publication number: 20100018833
    Abstract: A method optimizes a fill event of an apply chamber of a fluid-actuated clutch, and includes determining input values describing the fill event, and then estimating a fill time using the input values. The method includes filling the apply chamber using the estimated fill time (EFT) or within an allowable range of the EFT. The input values can include a command line pressure, command fill stroke pressure, and an estimated viscosity of the fluid, although other values can be used. The input values are processed through a neural network having an input layer, an optional hidden layer, and an output layer. An assembly includes a fluid-actuated clutch having an apply chamber and a controller operable for estimating the fill time required for filling the apply chamber, and for controlling the fill of the apply chamber within the EFT.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 28, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Ming Cao, Chi-Kuan Kao, Chunhao J. Lee
  • Publication number: 20090098978
    Abstract: A method for controlling a torque converter having an internal lockup clutch includes detecting vehicle operating conditions and executing one of a stored plurality of torque converter clutch modes each corresponding to a different set of vehicle operating conditions. A fully-released mode corresponds to vehicle pre-launch, a partially-engaged mode corresponds to post-launch of the vehicle in first gear, downshift, coasting, throttle tip-in, or throttle tip-out; a first fully-engaged mode corresponds to steady-state operation in second gear or a higher; and a second fully-engaged mode corresponds to an upshift. Slippage across the converter is controlled only during the first fully-engaged mode. A vehicle is also provided having an engine, transmission, torque converter with lockup clutch, and controller having a control algorithm.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 16, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chunhao J. Lee, Farzad Samie, Chi-Kuan Kao