Patents by Inventor Chi-Ming Wang

Chi-Ming Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10848090
    Abstract: A system for reducing at least one of motor loss or motor drive loss in a vehicle. The system includes a motor designed to convert electrical energy into torque. The system also includes a sensor designed to detect motor data corresponding to at least one of a motor torque or a motor speed of the motor. The system also includes a memory designed to store testing data including optimized current commands for multiple combinations of motor torques that were determined during testing of the motor or a similar motor. The system also includes a speed or torque controller coupled to the motor, the sensor, and the memory and designed to receive a speed or torque command and to determine a current command signal usable to control the motor based on the speed or torque command, the testing data, the detected motor data, and an artificial intelligence algorithm.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: November 24, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Chi-Ming Wang
  • Patent number: 10830978
    Abstract: The present disclosure describes a grommet formed of a polymeric material and adapted for bundling a plurality of discrete cables, comprising a main body having a generally cylindrical profile surrounding an interior cavity, the main body further having a length, a thickness, and a longitudinal axis; and a central member integrally coupled to the main body and located within the interior cavity of the main body, the central member extending generally parallel to the longitudinal axis of the main body. Methods of bundling cables are also provided.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: November 10, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Chi-Ming Wang, Aviral Joshi
  • Patent number: 10819096
    Abstract: An enclosure for breaking out a trunk cable includes: a base having a generally flat surface adapted for mounting to a mounting surface; a shell having a front and two side walls extending from opposite sides of the front and two opposed end walls, the side walls of the shell mounted to the base to form a cavity; a plurality of connectors mounted to each of the side walls; and a trunk cable routed into the cavity through one of the end walls, the trunk cable comprising a plurality of power conductors and/or a plurality of optical fibers. The power conductors and the optical fibers are connected with respective ones of the plurality of connectors.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 27, 2020
    Assignee: CommScope Technologies LLC
    Inventor: Chi-Ming Wang
  • Patent number: 10804818
    Abstract: A triboelectric generator includes a resiliently-deformable hexagonal housing including a first housing wall and a second housing wall positioned opposite the first housing wall. A first electrode resides along the first housing wall, and a second electrode resides along the second housing wall. A dielectric contact layer is positioned in intimate contact with the first electrode and between the first electrode and the second electrode. The dielectric contact layer is spaced apart from the second housing wall. The first housing wall is coupled to the second housing wall such that at least one of the first housing wall and the second housing wall is resiliently movable toward the other one of the first housing wall and the second housing wall so as to enable contact between the dielectric contact layer and the second electrode during operation of the triboelectric generator.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: October 13, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Khoa Vo, Chi-Ming Wang, Debasish Banerjee, Ercan Mehmet Dede, Shailesh Joshi
  • Patent number: 10668828
    Abstract: Methods, systems, and devices for inductively charging a vehicle. The inductive charging system includes multiple inductive coils for receiving a wireless transferred power. The inductive charging system includes a power electronics circuit that converts the wireless transferred power to a DC current and one or more power storage devices for storing the electrical energy by charging the one or more power storage devices using the DC current. The inductive charging system includes one or more motors configured to move the vehicle using the electrical energy. The inductive charging system includes an electronic control unit that is configured to control at least one of an amount of the electrical energy that is stored in each of the one or more power storage devices or an amount of the electrical energy that is distributed to the one or more motors to move the vehicle.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: June 2, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Chi-Ming Wang, Ercan M. Dede
  • Publication number: 20200154869
    Abstract: A tethering device includes a primary housing supporting a retraction mechanism; a secondary housing configured to be connected to a tethered object; a retractable tether extending from the retraction mechanism to the secondary housing to movably couple the secondary housing to the primary housing; a first magnet assembly supported by the primary housing; and a second magnet assembly supported by the secondary housing, wherein the second magnet assembly is configured to engage with the first magnet assembly to bias the secondary housing towards the primary housing.
    Type: Application
    Filed: September 24, 2019
    Publication date: May 21, 2020
    Inventors: Ian R. Jenkins, Leo K. Greeley, Chi-Ming Wang, Huang Chih Huang, Sheng Du, Jason H. Le Goff
  • Patent number: 10622509
    Abstract: A vertical type light emitting diode die and a method for fabricating the same is disclosed. A growth substrate is provided and an epitaxial layer is formed on the growth substrate. A metallic combined substrate is connected to the epitaxial layer. Then, the growth substrate is removed. Electrode units are formed on the top surface of the epitaxial layer. The epitaxial layer is divided into epitaxial dies according to the number of the plurality of electrode units. Each vertical type light emitting diode die formed in the abovementioned way includes the metallic combined substrate having a first metal layer and second metal layers. The first metal layer is combined with the two second metal layers by cutting, vacuum heating, and polishing, so as to enable the metallic combined substrate to have a high coefficient of thermal conductivity, a low coefficient of thermal expansion, and initial magnetic permeability.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: April 14, 2020
    Assignee: Ingentec Corporation
    Inventors: Ya-Li Chen, Chi-Ming Wang, Chia-Wei Tu, Cheng-Yu Chung, Hsiang-An Feng
  • Patent number: 10622510
    Abstract: A vertical type light emitting diode die and a method for fabricating the same is disclosed. A growth substrate is provided and an epitaxial layer is formed on the growth substrate. A metallic combined substrate is connected to the epitaxial layer. Then, the growth substrate is removed. Electrode units are formed on the top surface of the epitaxial layer. The epitaxial layer is divided into epitaxial dies according to the number of the plurality of electrode units. Each vertical type light emitting diode die formed in the abovementioned way includes the metallic combined substrate having a first metal layer and second metal layers. The first metal layer is combined with the two second metal layers by cutting, vacuum heating, and polishing, so as to enable the metallic combined substrate to have a high coefficient of thermal conductivity, a low coefficient of thermal expansion, and initial magnetic permeability.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 14, 2020
    Assignee: Ingentec Corporation
    Inventors: Ya-Li Chen, Chi-Ming Wang, Chia-Wei Tu, Cheng-Yu Chung, Hsiang-An Feng
  • Patent number: 10587208
    Abstract: An elastomeric triboelectric generator housing structured for incorporation into a wheel for a vehicle is provided. The housing includes a least one cavity having a pair of opposed walls, and a triboelectric generator incorporated into the at least one cavity. The at least one cavity is structured to actuate responsive to application of at least one force to the housing along an axis extending through the at least one cavity and between a central axis of the housing and a circumference of the housing.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: March 10, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Chi-Ming Wang, Khoa Vo, Debasish Banerjee, Ercan Mehmet Dede
  • Patent number: 10574152
    Abstract: Bridge circuits provide a reduced amplitude of gate-source voltage oscillation when the switches switch states during short circuit triggered turnoff for protection. Bridge circuits reduce an amplitude of an oscillation voltage between a gate and a source of a transistor that is utilized as a switch in the bridge circuit. This is beneficial because the reduced amplitude reduces the likelihood of damage to the transistor. A bridge circuit includes a first power rail and a second power rail. The bridge circuit further includes a first circuit having a first switch and a second switch connected in parallel between the first power rail and the second power rail. The bridge circuit further includes at least one passive circuit element connected in parallel with a primary energy flow path of the first circuit to damp oscillation voltage of the first circuit.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: February 25, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Chi-Ming Wang, Ercan M. Dede, George C. Bucsan
  • Publication number: 20200007064
    Abstract: A system for reducing at least one of motor loss or motor drive loss in a vehicle. The system includes a motor designed to convert electrical energy into torque. The system also includes a sensor designed to detect motor data corresponding to at least one of a motor torque or a motor speed of the motor. The system also includes a memory designed to store testing data including optimized current commands for multiple combinations of motor torques that were determined during testing of the motor or a similar motor. The system also includes a speed or torque controller coupled to the motor, the sensor, and the memory and designed to receive a speed or torque command and to determine a current command signal usable to control the motor based on the speed or torque command, the testing data, the detected motor data, and an artificial intelligence algorithm.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventor: Chi-Ming Wang
  • Publication number: 20190345670
    Abstract: The present disclosure describes a grommet formed of a polymeric material and adapted for bundling a plurality of discrete cables, comprising a main body having a generally cylindrical profile surrounding an interior cavity, the main body further having a length, a thickness, and a longitudinal axis; and a central member integrally coupled to the main body and located within the interior cavity of the main body, the central member extending generally parallel to the longitudinal axis of the main body. Methods of bundling cables are also provided.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 14, 2019
    Inventors: Chi-Ming Wang, Aviral Joshi
  • Publication number: 20190237953
    Abstract: An enclosure for breaking out a trunk cable includes: a base having a generally flat surface adapted for mounting to a mounting surface; a shell having a front and two side walls extending from opposite sides of the front and two opposed end walls, the side walls of the shell mounted to the base to form a cavity; a plurality of connectors mounted to each of the side walls; and a trunk cable routed into the cavity through one of the end walls, the trunk cable comprising a plurality of power conductors and/or a plurality of optical fibers. The power conductors and the optical fibers are connected with respective ones of the plurality of connectors.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventor: Chi-Ming Wang
  • Publication number: 20190189837
    Abstract: A vertical type light emitting diode die and a method for fabricating the same is disclosed. A growth substrate is provided and an epitaxial layer is formed on the growth substrate. A metallic combined substrate is connected to the epitaxial layer. Then, the growth substrate is removed. Electrode units are formed on the top surface of the epitaxial layer. The epitaxial layer is divided into epitaxial dies according to the number of the plurality of electrode units. Each vertical type light emitting diode die formed in the abovementioned way includes the metallic combined substrate having a first metal layer and second metal layers. The first metal layer is combined with the two second metal layers by cutting, vacuum heating, and polishing, so as to enable the metallic combined substrate to have a high coefficient of thermal conductivity, a low coefficient of thermal expansion, and initial magnetic permeability.
    Type: Application
    Filed: June 19, 2018
    Publication date: June 20, 2019
    Inventors: YA-LI CHEN, CHI-MING WANG, CHIA-WEI TU, CHENG-YU CHUNG, HSIANG-AN FENG
  • Publication number: 20190189836
    Abstract: A vertical type light emitting diode die and a method for fabricating the same is disclosed. A growth substrate is provided and an epitaxial layer is formed on the growth substrate. A metallic combined substrate is connected to the epitaxial layer. Then, the growth substrate is removed. Electrode units are formed on the top surface of the epitaxial layer. The epitaxial layer is divided into epitaxial dies according to the number of the plurality of electrode units. Each vertical type light emitting diode die formed in the abovementioned way includes the metallic combined substrate having a first metal layer and second metal layers. The first metal layer is combined with the two second metal layers by cutting, vacuum heating, and polishing, so as to enable the metallic combined substrate to have a high coefficient of thermal conductivity, a low coefficient of thermal expansion, and initial magnetic permeability.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Inventors: YA-LI CHEN, CHI-MING WANG, CHIA-WEI TU, CHENG-YU CHUNG, HSIANG-AN FENG
  • Patent number: 10290587
    Abstract: A power device package includes a dielectric substrate having an upper conductor layer and a lower conductor layer, a semiconductor die coupled to the upper conductor layer of the dielectric substrate via conductive adhesive, a cooler including a protruding hillock having a top surface and outer sides, the lower conductor layer of the dielectric substrate being coupled to the surface of the protruding hillock via an adhesive, and a magnetic material attached mateably around the protruding hillock. The magnetic material includes inner sides abutting the outer sides of the protruding hillock.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: May 14, 2019
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Khai Ngo, Chi-Ming Wang, Han Cui
  • Publication number: 20190118657
    Abstract: Methods, systems, and devices for an external vehicle charging system. The external vehicle charging system includes a first set of inductive coils. The first set of inductive coils include a first inductive coil and a second inductive coil and are configured to provide an alternating magnetic field to one or more inductive loops of a vehicle. The external vehicle charging system includes a sensor configured to detect a position of the one or more inductive loops and a processor. The processor is configured to determine a first threshold distance between the first inductive coil and the second inductive coil to reduce or eliminate interference. The processor is configured to activate the first inductive coil and the second inductive coil so that the first inductive coil and the second inductive coil align with the one or more inductive loops based on the detected position and the first threshold distance.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 25, 2019
    Inventors: Chi-Ming Wang, Ercan M. Dede
  • Patent number: 10263406
    Abstract: An enclosure for breaking out a trunk cable includes: a base having a generally flat surface adapted for mounting to a mounting surface; a shell having a front and two side walls extending from opposite sides of the front and two opposed end walls, the side walls of the shell mounted to the base to form a cavity; a plurality of connectors mounted to each of the side walls; and a trunk cable routed into the cavity through one of the end walls, the trunk cable comprising a plurality of power conductors and/or a plurality of optical fibers. The power conductors and the optical fibers are connected with respective ones of the plurality of connectors.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 16, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Chi-Ming Wang
  • Patent number: D876364
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: February 25, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Chi Ming Wang, Gregory A. Just, Peter Travis, Sean Thomas
  • Patent number: D876367
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: February 25, 2020
    Assignee: CommScope Technologies LLC
    Inventor: Chi-Ming Wang