Patents by Inventor Chi On Chui

Chi On Chui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230377891
    Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.
    Type: Application
    Filed: August 1, 2023
    Publication date: November 23, 2023
    Inventors: Kuei-Lun Lin, Chia-Wei Hsu, Xiong-Fei Yu, Chi On Chui, Chih-Yu Hsu, Jian-Hao Chen
  • Publication number: 20230378256
    Abstract: Transistor gate isolation structures and methods of forming the same are provided. In an embodiment, a device includes: an isolation region; a first gate structure on the isolation region; a second gate structure on the isolation region; and a gate isolation structure between the first gate structure and the second gate structure in a first cross-section, an upper portion of the gate isolation structure having a first concentration of an element, a lower portion of the gate isolation structure having a second concentration of the element, the first concentration different from the second concentration, the lower portion extending continuously along a sidewall of the first gate structure, beneath the upper portion, and along a sidewall of the second gate structure.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 23, 2023
    Inventors: Li-Fong Lin, Wen-Kai Lin, Zhen-Cheng Wu, Chi On Chui
  • Publication number: 20230377887
    Abstract: A method includes forming an etching mask, which includes forming a bottom anti-reflective coating over a target layer, forming an inorganic middle layer over the bottom anti-reflective coating, and forming a patterned photo resist over the inorganic middle layer. The patterns of the patterned photo resist are transferred into the inorganic middle layer and the bottom anti-reflective coating to form a patterned inorganic middle layer and a patterned bottom anti-reflective coating, respectively. The patterned inorganic middle layer is then removed. The target layer is etched using the patterned bottom anti-reflective coating to define a pattern in the target layer.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 23, 2023
    Inventors: Chung-Ting Ko, Tai-Chun Huang, Chi On Chui
  • Publication number: 20230378262
    Abstract: A device includes a semiconductor nanostructure, and an oxide layer, which includes horizontal portions on a top surface and a bottom surface of the semiconductor nanostructure, vertical portions on sidewalls of the semiconductor nanostructure, and corner portions on corners of the semiconductor nanostructure. The horizontal portions have a first thickness. The vertical portions have a second thickness. The corner portions have a third thickness. Both of the second thickness and the third thickness are greater than the first thickness. A high-k dielectric layer surrounds the oxide layer. A gate electrode surrounds the high-k dielectric layer.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Shu-Han Chen, Yi-Shao Li, Chun-Heng Chen, Chi On Chui
  • Publication number: 20230378179
    Abstract: A method includes forming a thin-film omega transistor, which includes forming a gate fin over a dielectric layer, forming a gate dielectric on sidewalls and a top surface of the gate fin, and depositing an oxide semiconductor layer over the gate dielectric. The gate fin, the gate dielectric, and the oxide semiconductor layer collectively form a fin structure. A source region is formed to contact first sidewalls and a first top surface of a first portion of the oxide semiconductor layer. A drain region is formed to contact second sidewalls and a second top surface of a second portion of the oxide semiconductor layer.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 23, 2023
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11824100
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region of a substrate. The gate stack includes a gate dielectric layer and a first work function layer over the gate dielectric layer. The first work function layer includes a plurality of first layers and a plurality of second layers arranged in an alternating manner over the gate dielectric layer. The plurality of first layers include a first material. The plurality of second layers include a second material different from the first material.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11824104
    Abstract: A method of manufacturing a semiconductor device includes forming a dielectric layer conformally over a plurality of fins on a substrate, forming a first high-k layer conformally over the dielectric layer, and forming a flowable oxide over the first high-k layer. Forming the flowable oxide includes filling first trenches adjacent fins of the plurality of fins. The method further includes recessing the flow able oxide to form second trenches between adjacent fins of the plurality of fins, forming a second high-k layer over the first high-k layer and the flowable oxide, performing a planarization that exposes top surfaces of the plurality of fins, and recessing the dielectric layer to form a plurality of dummy fins that include remaining portions of the first and second high-k layers and the flowable oxide.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Yang Lai, Che-Hao Chang, Chi On Chui
  • Patent number: 11823894
    Abstract: A method for forming a crystalline high-k dielectric layer and controlling the crystalline phase and orientation of the crystal growth of the high-k dielectric layer during an anneal process. The crystalline phase and orientation of the crystal growth of the dielectric layer may be controlled using seeding sections of the dielectric layer serving as nucleation sites and using a capping layer mask during the anneal process. The location of the nucleation sites and the arrangement of the capping layer allow the orientation and phase of the crystal growth of the dielectric layer to be controlled during the anneal process. Based on the dopants and the process controls used the phase can be modified to increase the permittivity and/or the ferroelectric property of the dielectric layer.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Yen Peng, Te-Yang Lai, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11824101
    Abstract: A semiconductor device includes a semiconductor substrate, an isolation feature over the semiconductor substrate, a fin protruding from the semiconductor substrate and through the isolation feature, a gate stack over and engaging the fin, and a gate spacer on sidewalls of the gate stack. A bottom portion of the sidewalls of the gate stack tilts inwardly towards the gate stack.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sai-Hooi Yeong, Chi-On Chui, Kai-Hsuan Lee, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11823955
    Abstract: A method for forming a semiconductor device includes: forming a gate structure over a fin, where the fin protrudes above a substrate; forming an opening in the gate structure; forming a first dielectric layer along sidewalls and a bottom of the opening, where the first dielectric layer is non-conformal, where the first dielectric layer has a first thickness proximate to an upper surface of the gate structure distal from the substrate, and has a second thickness proximate to the bottom of the opening, where the first thickness is larger than the second thickness; and forming a second dielectric layer over the first dielectric layer to fill the opening, where the first dielectric layer is formed of a first dielectric material, and the second dielectric layer is formed of a second dielectric material different from the first dielectric material.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chieh-Ping Wang, Ting-Gang Chen, Bo-Cyuan Lu, Tai-Chun Huang, Chi On Chui
  • Publication number: 20230368830
    Abstract: A semiconductor device including a capacitor, with a memory film isolating a first electrode from a contact, formed over a transistor and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a gate stack over a semiconductor substrate; a capacitor over the gate stack, the capacitor including a first electrode extending along a top surface of the gate stack, the first electrode being U-shaped; a first ferroelectric layer over the first electrode; and a second electrode over the first ferroelectric layer, a top surface of the second electrode being level with a top surface of the first ferroelectric layer, and the top surface of the first ferroelectric layer and the top surface of the second electrode being disposed further from the semiconductor substrate than a topmost surface of the first electrode.
    Type: Application
    Filed: June 29, 2023
    Publication date: November 16, 2023
    Inventors: Chenchen Wang, Sai-Hooi Yeong, Chi On Chui, Yu-Ming Lin
  • Publication number: 20230369512
    Abstract: A semiconductor device includes: a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions, where the nanosheets comprise a first semiconductor material; inner spacers between the nanosheets and at opposite ends of the nanosheets, where there is an air gap between each of the inner spacers and a respective source/drain region of the source/drain regions; and a gate structure over the fin and between the source/drain regions.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Sai-Hooi Yeong, Bo-Feng Young, Chien Ning Yao, Chi On Chui
  • Publication number: 20230369462
    Abstract: In a method of manufacturing a semiconductor device, a metal gate structure is formed and cut into two pieces of metal gate structures by forming a gate end spaces. A first liner layer is formed in the gate end space, and a sacrificial layer is formed on the first liner layer, and recessed. A second liner layer is formed over the recessed sacrificial layer, an air gap is formed by removing the recessed sacrificial layer; and a third liner layer is formed over the second liner layer.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 16, 2023
    Inventors: Chih-Hung SUN, Po-Hsien CHENG, Zhen-Cheng WU, Chi-On CHUI
  • Publication number: 20230369471
    Abstract: Circuit devices and methods of forming the same are provided. In one embodiment, a method includes receiving a workpiece that includes a substrate and a fin extending from the substrate, forming a first ferroelectric layer on the fin, forming a dummy gate structure over a channel region of the fin, forming a gate spacer over sidewalls of the dummy gate structure, forming an inter-level dielectric layer over the workpiece, removing the dummy gate structure to expose the first ferroelectric layer over the channel region of the fin, and forming a gate electrode over the exposed first ferroelectric layer over the channel region of the fin.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Bo-Feng Young, Chih-Yu Chang, Sai-Hooi Yeong, Chi On Chui, Chih-Hao Wang
  • Publication number: 20230369124
    Abstract: A method of forming a semiconductor device includes: forming, in a first device region of the semiconductor device, first nanostructures over a first fin that protrudes above a substrate; forming, in a second device region of the semiconductor device, second nanostructures over a second fin that protrudes above the substrate, where the first and the second nanostructures include a semiconductor material and extend parallel to an upper surface of the substrate; forming a dielectric material around the first and the second nanostructures; forming a first hard mask layer in the first device region around the first nanostructures and in the second device region around the second nanostructures; removing the first hard mask layer from the second device region after forming the first hard mask layer; and after removing the first hard mask layer, increasing a first thickness of the dielectric material around the second nanostructures by performing an oxidization process.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Te-Yang Lai, Hsueh-Ju Chen, Tsung-Da Lin, Chi On Chui
  • Publication number: 20230369098
    Abstract: Small sized and closely pitched features can be formed by patterning a layer to have holes therein and then expanding the layer so that the holes shrink. If the expansion is sufficient to pinch off the respective holes, multiple holes can be formed from one larger hole. Holes smaller and of closer pitch than practical or possible may be obtained in this way. One process for expanding the layer includes implanting a dopant species having a larger average atomic spacing than does the material of the layer.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 16, 2023
    Inventors: Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20230369053
    Abstract: Semiconductor devices and methods of manufacturing are presented wherein a gate dielectric is treated within an analog region of a semiconductor substrate. The gate dielectric may be treated with a plasma exposure and/or an annealing process in order to form a recovered region of the gate dielectric. A separate gate dielectric is formed within a logic region of the semiconductor substrate, and a first gate electrode and second gate electrode are formed over the gate dielectrics.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Meng-Han Lin, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20230369472
    Abstract: Negative capacitance field-effect transistor (NCFET) and ferroelectric field-effect transistor (FE-FET) devices and methods of forming are provided. The gate dielectric stack of the NCFET and FE-FET devices includes a non-ferroelectric interfacial layer formed over the semiconductor channel, and a ferroelectric gate dielectric layer formed over the interfacial layer. The ferroelectric gate dielectric layer is formed by inserting dopant-source layers in between amorphous high-k dielectric layers and then converting the alternating sequence of dielectric layers to a ferroelectric gate dielectric layer by a post-deposition anneal (PDA). The ferroelectric gate dielectric layer has adjustable ferroelectric properties that may be varied by altering the precisely-controlled locations of the dopant-source layers using ALD/PEALD techniques. Accordingly, the methods described herein enable fabrication of stable NCFET and FE-FET FinFET devices that exhibit steep subthreshold slopes.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Te-Yang Lai, Chun-Yen Peng, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20230369428
    Abstract: Embodiments provide a two-tiered trench isolation structure under the epitaxial regions (e.g., epitaxial source/drain regions) of a nano-FET transistor device, and methods of forming the same. The first tier provides an isolation structure with a low k value. The second tier provides an isolation structure with a higher k value, with material greater density, and greater etch resistivity than the first tier isolation structure.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 16, 2023
    Inventors: Chih-Hung Sun, Wen-Kai Lin, Che-Hao Chang, Zhen-Cheng Wu, Chi On Chui
  • Publication number: 20230369120
    Abstract: A method of manufacturing a FinFET includes at last the following steps. A semiconductor substrate is patterned to form trenches in the semiconductor substrate and semiconductor fins located between two adjacent trenches of the trenches. Gate stacks is formed over portions of the semiconductor fins. Strained material portions are formed over the semiconductor fins revealed by the gate stacks. First metal contacts are formed over the gate stacks, the first metal contacts electrically connecting the strained material portions. Air gaps are formed in the FinFET at positions between two adjacent gate stacks and between two adjacent strained materials.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sai-Hooi Yeong, Kai-Hsuan Lee, Yu-Ming Lin, Chi-On Chui