Patents by Inventor Chi Tu

Chi Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10164094
    Abstract: A semiconductor device includes a memory circuit and a logic circuit. The memory circuit includes a word line, a bit line, a common line and a memory transistor having a gate coupled to the word line, a drain coupled to the bit line and a source coupled to the common line. The logic circuit includes a field effect transistor (FET) having a gate, a drain and a source. The memory transistor has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a first insulating layer and a first ferroelectric (FE) material layer. The FET has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a second insulating layer and a second FE material layer.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chi Tu, Jen-Sheng Yang, Sheng-Hung Shih, Tong-Chern Ong, Wen-Ting Chu
  • Patent number: 10164674
    Abstract: Systems and methods are provided for receiver nonlinearity estimation and cancellation. During processing of received radio frequency (RF) signals, it may be determined when one or more other signals, different from the received RF signals, cause nonlinearity affecting processing of the RF signals, and one or more cancellation adjustments may be applied during processing of the RF signals, for mitigating effects of the nonlinearity. Determining the one or more cancellation adjustments may be based on narrowband (NB) estimation of the effects of the nonlinearity, and the one or more cancellation adjustments may be configured as wideband (WB) corrections. The NB estimation may be applied based on channelization of the received RF signals. The NB estimation may comprise generating reference nonlinearity information relating to the one or more other signals, and generating, based on the reference nonlinearity information, control data for configuring the one or more cancellation adjustments.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: December 25, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Wen-Chi Tu, Stephane Laurent-Michel
  • Patent number: 10164185
    Abstract: In some embodiments, the present disclosure relates to a method of operating an RRAM cell having a PMOS access transistor. The method may be performed by turning on a PMOS transistor having a drain terminal coupled to a lower electrode of an RRAM device. A first voltage is provided to a source terminal of the PMOS transistor, and a second voltage is provided to a bulk terminal of the PMOS transistor. The second voltage is larger than the first voltage. A third voltage is provided to an upper electrode of the RRAM device. The third voltage is larger than the first voltage.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Hung Shih, Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Jen-Sheng Yang, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10163981
    Abstract: The present disclosure relates to an integrated circuit having an interconnect wire contacting an upper electrode of the RRAM (resistive random access memory) device, and a method of formation. In some embodiments, the integrated circuit comprises an RRAM device having a dielectric data storage layer disposed between a lower electrode and an upper electrode. An interconnect wire contacts an upper surface of the upper electrode, and an interconnect via is arranged onto the interconnect wire. The interconnect via is set back from one or more outermost sidewalls of the interconnect wire. The interconnect wire has a relatively large size that provides for a good electrical connection between the interconnect wire and the upper electrode, thereby increasing a process window of the RRAM device.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10158070
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10157976
    Abstract: A system-on-chip (SOC) device comprises a first capacitor in a first region, a second capacitor in a second region, and may further comprise a third capacitor in a third region, and any additional number of capacitors in additional regions. The capacitors may be of different shapes and sizes. A region may comprise more than one capacitor. Each capacitor in a region has a top electrode, a bottom electrode, and a capacitor insulator. The top electrodes of all the capacitors are formed in a common process, while the bottom electrodes of all the capacitors are formed in a common process. The capacitor insulator may have different number of sub-layers, formed with different materials or different thickness. The capacitors may be formed in an inter-layer dielectric layer or in an inter-metal dielectric layer. The regions may be a mixed signal region, an analog region, a radio frequency region, a dynamic random access memory region, and so forth.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Wen-Chuan Chiang, Chen-Jong Wang
  • Patent number: 10158072
    Abstract: A semiconductor device includes an inter-metal dielectric layer, a memory cell, a transistor and a dielectric layer. The memory cell includes a metal-insulator-metal (MIM) structure over a top surface of the inter-metal dielectric layer. The transistor underlies the inter-metal dielectric layer. The dielectric layer extends over the transistor and along the top surface of the inter-metal dielectric layer. The dielectric layer is separated from the MIM structure.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jen-Sheng Yang, Wen-Ting Chu, Chih-Yang Chang, Chin-Chieh Yang, Kuo-Chi Tu, Sheng-Hung Shih, Yu-Wen Liao, Hsia-Wei Chen, I-Ching Chen
  • Publication number: 20180351099
    Abstract: A semiconductor device includes an inter-metal dielectric layer, a memory cell, a transistor and a dielectric layer. The memory cell includes a metal-insulator-metal (MIM) structure over a top surface of the inter-metal dielectric layer. The transistor underlies the inter-metal dielectric layer. The dielectric layer extends over the transistor and along the top surface of the inter-metal dielectric layer. The dielectric layer is separated from the MIM structure.
    Type: Application
    Filed: July 28, 2017
    Publication date: December 6, 2018
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jen-Sheng YANG, Wen-Ting CHU, Chih-Yang CHANG, Chin-Chieh YANG, Kuo-Chi TU, Sheng-Hung SHIH, Yu-Wen LIAO, Hsia-Wei CHEN, I-Ching CHEN
  • Patent number: 10103330
    Abstract: A semiconductor structure includes a resistance variable memory structure. The semiconductor structure also includes a dielectric layer. The resistance variable memory structure is over the dielectric layer. The resistance variable memory structure includes a first electrode disposed over the dielectric layer. The first electrode has a sidewall surface. A resistance variable layer has a first portion which is disposed over the sidewall surface of the first electrode and a second portion which extends from the first portion away from the first electrode. A second electrode is over the resistance variable layer.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: October 16, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Yu-Wen Liao, Chin-Chieh Yang, Wen-Ting Chu
  • Patent number: 10103200
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate and designed for data storage. The resistive element includes a resistive material layer. The resistive element further includes first and second electrodes interposed by the resistive material layer. The resistive element further includes a field effect transistor (FET) formed on the semiconductor substrate and coupled with the resistive memory element, wherein the FET includes asymmetric source and drain, the drain having a higher doping concentration than the source. The resistive memory element is coupled with the drain.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: October 16, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10050197
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, a protection material and a second electrode. The first electrode has a top surface on the memory region. The resistance variable layer has at least a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection material surrounds the second portion of the resistance variable layer. The protection material is configurable to protect at least one conductive path in the resistance variable layer. The second electrode is disposed over the resistance variable layer.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Yu-Wen Liao, Chin-Chieh Yang, Wen-Ting Chu
  • Publication number: 20180226340
    Abstract: The present disclosure relates to an integrated circuit configured to mitigate damage to MIM decoupling capacitors. In some embodiments, the integrated chip has a lower interconnect layer vertically separated from a substrate by a first inter-level dielectric (ILD) layer. A conductive contact extends from a transistor device within the substrate to an uppermost surface of the first ILD layer. A plurality of MIM (metal-insulator-metal) structures are arranged over the lower interconnect layer. An upper interconnect layer is over the plurality of MIM structures. One or both of the lower interconnect layer and the upper interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection.
    Type: Application
    Filed: April 2, 2018
    Publication date: August 9, 2018
    Inventors: Kuo-Chi Tu, Chin-Chieh Yang, Wen-Ting Chu
  • Publication number: 20180218770
    Abstract: In some embodiments, the present disclosure relates to a resistive random access memory (RRAM) memory circuit. The memory circuit has a word-line decoder operably coupled to a first RRAM device and a second RRAM device by a word-line. A bit-line decoder is coupled to the first RRAM device by a first bit-line and to the second RRAM device by a second bit-line. A bias element is configured to apply a first non-zero bias voltage to the second bit-line concurrent to the bit-line decoder applying a non-zero voltage to the first bit-line.
    Type: Application
    Filed: March 27, 2018
    Publication date: August 2, 2018
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Chang-Sheng Liao, Hsia-Wei Chen, Jen-Sheng Yang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Manish Kumar Singh, Chi-Tsai Chen
  • Patent number: 10038139
    Abstract: The present disclosure provides a resistive random access memory (RRAM) cells and methods of making the same. The RRAM cell includes a transistor and an RRAM structure. The RRAM structure includes a bottom electrode having a via portion and a top portion, a resistive material layer on the bottom electrode having a width that is same as a width of the top portion of the bottom electrode; a capping layer over the bottom electrode; a spacer surrounding the capping layer; and, a top electrode on the capping layer having a smaller width than the resistive material layer. The RRAM cell further includes a conductive material connecting the top electrode of the RRAM structure to a metal layer.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: July 31, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chin-Chieh Yang, Chih-Yang Chang, Yu-Wen Liao
  • Patent number: 10008662
    Abstract: A method of forming a magnetoresistive random access memory (MRAM) device including a perpendicular MTJ (magnetic tunnel junction) is provided. The method includes forming a magnetic tunneling junction (MTJ) over a bottom electrode layer. A top electrode layer is formed over an upper surface of the MTJ, and a hard mask is formed over an upper surface of the top electrode layer. A first etch is performed through the top electrode layer, through regions of the MTJ unmasked by the hard mask, to form a top electrode and an etched MTJ. Sidewall spacers are formed extending from an upper surface of the hard mask or the top electrode, along sidewalls of the top electrode and the etched MTJ, to a point below or about even with an upper surface of the bottom electrode. A resulting MRAM device structure is also provided.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: June 26, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Chun You, Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20180151746
    Abstract: A semiconductor device includes a memory circuit and a logic circuit. The memory circuit includes a word line, a bit line, a common line and a memory transistor having a gate coupled to the word line, a drain coupled to the bit line and a source coupled to the common line. The logic circuit includes a field effect transistor (FET) having a gate, a drain and a source. The memory transistor has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a first insulating layer and a first ferroelectric (FE) material layer. The FET has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a second insulating layer and a second FE material layer.
    Type: Application
    Filed: June 30, 2017
    Publication date: May 31, 2018
    Inventors: Kuo-Chi Tu, Jen-Sheng YANG, Sheng-Hung SHIH, Tong-Chern ONG, Wen-Ting CHU
  • Patent number: 9985203
    Abstract: The present disclosure provides resistive random access memory (RRAM) structures and methods of making the same. The RRAM structures include a bottom electrode having protruded step portion that allows formation of a self-aligned conductive path with a top electrode during operation. The protruded step portion may have an inclination angle of about 30 degrees to 150 degrees. Multiple RRAM structures may be formed by etching through a RRAM stack.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jonathan Tehan Chen, Chung-Cheng Chou, Po-Hao Lee, Kuo-Chi Tu
  • Publication number: 20180138403
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20180123001
    Abstract: A light-emitting device including at least one light-emitting unit, a wavelength conversion adhesive layer, and a reflective protecting element is provided. The light-emitting unit has an upper surface and a lower surface opposite to each other. The light-emitting unit includes two electrode pads, and the two electrode pads are located on the lower surface. The wavelength conversion adhesive layer is disposed on the upper surface. The wavelength conversion adhesive layer includes a low-concentration fluorescent layer and a high-concentration fluorescent layer. The high-concentration fluorescent layer is located between the low-concentration fluorescent layer and the light-emitting unit. The width of the high-concentration fluorescent layer is WH. The width of the low-concentration fluorescent layer is WL. The width of the light-emitting unit is WE. The light-emitting device further satisfies the following inequalities: WE<WL, WH<WL and 0.8<WH/WE?1.2.
    Type: Application
    Filed: October 19, 2017
    Publication date: May 3, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Wei Hung, Long-Chi Tu, Jui-Fu Chang, Chun-Ming Tseng, Yun-Chu Chen
  • Patent number: 9947617
    Abstract: The present disclosure relates to an integrated circuit configured to mitigate damage to MIM decoupling capacitors. In some embodiments, the integrated chip has a lower metal interconnect layer arranged over a substrate. A plurality of MIM (metal-insulator-metal) structures are arranged over the lower metal interconnect layer, and a plurality of memory cells are arranged over the lower metal interconnect layer at a location laterally offset from the plurality of MIM structures. An upper metal interconnect layer is arranged over the plurality of MIM structures and the plurality of memory cells. One or both of the lower metal interconnect layer and the upper metal interconnect layer are comprised within a conductive path that electrically couples the plurality of MIM structures in a series connection. The plurality of MIM structures and the plurality of memory cells comprise multi-layer structures having a substantially same shape.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: April 17, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Chi Tu, Chin-Chieh Yang, Wen-Ting Chu