Patents by Inventor Chia-Chun Hung

Chia-Chun Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084447
    Abstract: A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Peng-Cheng Hong, Jun-Liang Pu, W.L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
  • Patent number: 11920238
    Abstract: A method of making a sealing article that includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Peng-Cheng Hong, Jun-Liang Pu, W. L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
  • Patent number: 11910490
    Abstract: A multi-member Bluetooth device for communicating data with a remote Bluetooth device is disclosed including: a main Bluetooth circuit and an auxiliary Bluetooth circuit. In the period during which the auxiliary Bluetooth circuit operates at a relay mode, the main Bluetooth circuit receives packets transmitted from the remote Bluetooth device and forwards the received packets to the auxiliary Bluetooth circuit; the auxiliary Bluetooth circuit does not sniff packets issued from the remote Bluetooth device, but will switch to a sniffing mode if a signal reception quality indicator of the auxiliary Bluetooth circuit is superior to a predetermined indicator value. In the period during which the auxiliary Bluetooth circuit operates at the sniffing mode, the auxiliary Bluetooth circuit sniffs packets issued from the remote Bluetooth device and the main Bluetooth circuit receives packets transmitted from the remote Bluetooth device.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: February 20, 2024
    Assignee: Realtek Semiconductor Corp.
    Inventors: Yi-Cheng Chen, Kuan-Chung Huang, Chia Chun Hung, Hou Wei Lin
  • Patent number: 11901295
    Abstract: A method for semiconductor manufacturing is disclosed. The method includes receiving a device having a first surface through which a first metal or an oxide of the first metal is exposed. The method further includes depositing a dielectric film having Si, N, C, and O over the first surface such that the dielectric film has a higher concentration of N and C in a first portion of the dielectric film near the first surface than in a second portion of the dielectric film further away from the first surface than the first portion. The method further includes forming a conductive feature over the dielectric film. The dielectric film electrically insulates the conductive feature from the first metal or the oxide of the first metal.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Wu, Li-Hsuan Chu, Ching-Wen Wen, Chia-Chun Hung, Chen Liang Chang, Chin-Szu Lee, Hsiang Liu
  • Patent number: 11851754
    Abstract: A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Peng-Cheng Hong, Jun-Liang Pu, W. L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
  • Publication number: 20230400699
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, and wherein the conductive layer is formed over at least one of the following: the first surface of the first dielectric layer and a portion of sidewalls of each of the plurality of via holes, and wherein the conductive layer is configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: August 8, 2023
    Publication date: December 14, 2023
    Inventors: Hsin-Yu CHEN, Yen-Chiang LIU, June-Jie CHIOU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, LAVANYA SANAGAVARAPU, Han-Zong PAN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, Ji-Hong CHIANG, Hsi-Cheng HSU
  • Publication number: 20230359056
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventors: Hsin-Yu CHEN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, JI-Hong CHIANG, Yen-Chiang LIU, Jiun-Jie CHIOU, Li-Yang TU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Hsi-Cheng HSU
  • Publication number: 20230352445
    Abstract: Alignment of devices formed on substrates that are to be bonded may be achieved through the use of scribe lines between the devices, where the scribe lines progressively increase or decrease in size from a center to an edge of one or more of the substrates to compensate for differences in the thermal expansion rates of the substrates. The devices on the substrates are brought into alignment as the substrates are heated during a bonding operation due to the progressively increased or decreased sizes of the scribe lines. The scribe lines may be arranged in a single direction in a substrate to compensate for thermal expansion along a single axis of the substrate or may be arranged in a plurality of directions to compensate for actinomorphic thermal expansion.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Inventors: Hsi-Cheng HSU, Jui-Chun WENG, Ching-Hsiang HU, Ji-Hong CHIANG, Kuo-Hao LEE, Chia-Yu LIN, Chia-Chun HUNG, Yen-Chieh TU, Chien-Tai SU, Hsin-Yu CHEN
  • Patent number: 11805037
    Abstract: A latency adjustment method includes the following operations: in response to a predetermined event of a data stream occurred during a first interval, performing a transmission status determining operation to determine whether a transmission status of the data stream is stable; in response the transmission status being stable, determining whether a total number of times of packet loss compensation events of the data stream occurred during a previous interval is higher than a first predetermined value; and in response to the transmission status being unstable or the total number of times being higher than the first predetermined value, increasing a latency of the data stream.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: October 31, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Cheng-Zhuo Zhu, Chia Chun Hung
  • Patent number: 11782284
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Yen-Chiang Liu, Jiun-Jie Chiou, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Hsi-Cheng Hsu
  • Patent number: 11778405
    Abstract: An audio processing device includes: a sound level measuring circuit arranged to operably generate multiple sound level values, wherein the multiple sound level values respectively correspond to the sound levels generated by an audio playback device at multiple time points or the sound levels received by a microphone at multiple time points; an audio dose calculating circuit coupled with the sound level measuring circuit and arranged to operably generate an audio dose value corresponding to a measuring period based on the multiple sound level values and contents of a weighting table; a control circuit coupled with the audio dose calculating circuit and arranged to operably compare the audio dose value with a dose threshold to determine whether to generate a control signal or not; and an indication signal generating circuit coupled with the control circuit and arranged to operably generate a corresponding indication signal according to the control signal.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: October 3, 2023
    Assignee: Realtek Semiconductor Corp.
    Inventors: Yu Wei Liu, Chi Wu, Chia Chun Hung
  • Patent number: 11769049
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network system used to control an agent interacting with an environment to perform a specified task. One of the methods includes causing the agent to perform a task episode in which the agent attempts to perform the specified task; for each of one or more particular time steps in the sequence: generating a modified reward for the particular time step from (i) the actual reward at the time step and (ii) value predictions at one or more time steps that are more than a threshold number of time steps after the particular time step in the sequence; and training, through reinforcement learning, the neural network system using at least the modified rewards for the particular time steps.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: September 26, 2023
    Assignee: DeepMind Technologies Limited
    Inventors: Gregory Duncan Wayne, Timothy Paul Lillicrap, Chia-Chun Hung, Joshua Simon Abramson
  • Patent number: 11742320
    Abstract: Alignment of devices formed on substrates that are to be bonded may be achieved through the use of scribe lines between the devices, where the scribe lines progressively increase or decrease in size from a center to an edge of one or more of the substrates to compensate for differences in the thermal expansion rates of the substrates. The devices on the substrates are brought into alignment as the substrates are heated during a bonding operation due to the progressively increased or decreased sizes of the scribe lines. The scribe lines may be arranged in a single direction in a substrate to compensate for thermal expansion along a single axis of the substrate or may be arranged in a plurality of directions to compensate for actinomorphic thermal expansion.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Cheng Hsu, Jui-Chun Weng, Ching-Hsiang Hu, Ji-Hong Chiang, Kuo-Hao Lee, Chia-Yu Lin, Chia-Chun Hung, Yen-Chieh Tu, Chien-Tai Su, Hsin-Yu Chen
  • Publication number: 20230264945
    Abstract: A micro-electromechanical-system (MEMS) device may be formed to include an anti-stiction polysilicon layer on one or more moveable MEMS structures of a device wafer of the MEMS device to reduce, minimize, and/or eliminate stiction between the moveable MEMS structures and other components or structures of the MEMS device. The anti-stiction polysilicon layer may be formed such that a surface roughness of the anti-stiction polysilicon layer is greater than the surface roughness of a bonding polysilicon layer on the surfaces of the device wafer that are to be bonded to a circuitry wafer of the MEMS device. The higher surface roughness of the anti-stiction polysilicon layer may reduce the surface area of the bottom of the moveable MEMS structures, which may reduce the likelihood that the one or more moveable MEMS structures will become stuck to the other components or structures.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Hsi-Cheng HSU, Kuo-Hao LEE, Jui-Chun WENG, Ching-Hsiang HU, Ji-Hong CHIANG, Lavanya SANAGAVARAPU, Chia-Yu LIN, Chia-Chun HUNG, Jia-Syuan LI, Yu-Pei CHIANG
  • Patent number: 11726342
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yu Chen, Chun-Peng Li, Chia-Chun Hung, Ching-Hsiang Hu, Wei-Ding Wu, Jui-Chun Weng, Ji-Hong Chiang, Yen Chiang Liu, Jiun-Jie Chiou, Li-Yang Tu, Jia-Syuan Li, You-Cheng Jhang, Shin-Hua Chen, Lavanya Sanagavarapu, Han-Zong Pan, Hsi-Cheng Hsu
  • Patent number: 11700521
    Abstract: A Bluetooth communication system includes: an inquirer-side Bluetooth device arranged to operably generate and transmit a Bluetooth inquiry request; and a requester-side Bluetooth device arranged to operably receive and parse the Bluetooth inquiry request, and to operably generate and transmit a Frequency Hop Synchronization (FHS) packet containing a requester-side Bluetooth address and an Extended Inquiry Response (EIR) packet containing an auto-pairing request to the inquirer-side Bluetooth device. The inquirer-side Bluetooth device conducts an auto-pairing procedure with the requester-side Bluetooth device according to the contents of FHS packet and the EIR packet, but the inquirer-side Bluetooth device and the requester-side Bluetooth device does not switch to operating modes for transmitting or receiving Bluetooth advertising packets before conducting the auto-pairing procedure.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: July 11, 2023
    Assignee: Realtek Semiconductor Corp.
    Inventor: Chia Chun Hung
  • Publication number: 20230178076
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling agents. In particular, an interactive agent can be controlled based on multi-modal inputs that include both an observation image and a natural language text sequence.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 8, 2023
    Inventors: Joshua Simon Abramson, Arun Ahuja, Federico Javier Carnevale, Petko Ivanov Georgiev, Chia-Chun Hung, Timothy Paul Lillicrap, Alistair Michael Muldal, Adam Anthony Santoro, Tamara Louise von Glehn, Jessica Paige Landon, Gregory Duncan Wayne, Chen Yan, Rui Zhu
  • Patent number: 11671811
    Abstract: A Bluetooth communication system includes: an inquirer-side Bluetooth device arranged to operably generate and transmit a Bluetooth inquiry request; and a requester-side Bluetooth device arranged to operably receive and parse the Bluetooth inquiry request, and to operably generate and transmit a Frequency Hop Synchronization (FHS) packet containing a requester-side Bluetooth address and an Extended Inquiry Response (EIR) packet containing an auto-pairing request to the inquirer-side Bluetooth device. The inquirer-side Bluetooth device conducts an auto-pairing procedure with the requester-side Bluetooth device according to the contents of FHS packet and the EIR packet, but at least one of the inquirer-side Bluetooth device and the requester-side Bluetooth device does not support Bluetooth Low Energy (BLE) technology.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: June 6, 2023
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventor: Chia Chun Hung
  • Patent number: 11655138
    Abstract: A micro-electromechanical-system (MEMS) device may be formed to include an anti-stiction polysilicon layer on one or more moveable MEMS structures of a device wafer of the MEMS device to reduce, minimize, and/or eliminate stiction between the moveable MEMS structures and other components or structures of the MEMS device. The anti-stiction polysilicon layer may be formed such that a surface roughness of the anti-stiction polysilicon layer is greater than the surface roughness of a bonding polysilicon layer on the surfaces of the device wafer that are to be bonded to a circuitry wafer of the MEMS device. The higher surface roughness of the anti-stiction polysilicon layer may reduce the surface area of the bottom of the moveable MEMS structures, which may reduce the likelihood that the one or more moveable MEMS structures will become stuck to the other components or structures.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: May 23, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Cheng Hsu, Kuo-Hao Lee, Jui-Chun Weng, Ching-Hsiang Hu, Ji-Hong Chiang, Lavanya Sanagavarapu, Chia-Yu Lin, Chia-Chun Hung, Jia-Syuan Li, Yu-Pei Chiang
  • Publication number: 20230040518
    Abstract: An audio processing device includes: a sound level measuring circuit arranged to operably generate multiple sound level values, wherein the multiple sound level values respectively correspond to the sound levels generated by an audio playback device at multiple time points or the sound levels received by a microphone at multiple time points; an audio dose calculating circuit coupled with the sound level measuring circuit and arranged to operably generate an audio dose value corresponding to a measuring period based on the multiple sound level values and contents of a weighting table; a control circuit coupled with the audio dose calculating circuit and arranged to operably compare the audio dose value with a dose threshold to determine whether to generate a control signal or not; and an indication signal generating circuit coupled with the control circuit and arranged to operably generate a corresponding indication signal according to the control signal.
    Type: Application
    Filed: March 10, 2022
    Publication date: February 9, 2023
    Applicant: Realtek Semiconductor Corp.
    Inventors: Yu Wei LIU, Chi WU, Chia Chun HUNG